Afshari, A., Ghahroudi Tali, M., Sadough, H., & Ehteshami Moin abadi, M. (2020). Assessment slope instability around Lorestan railway by using differential synthetic aperture radar interferometry (DInSAR).
Quantitative Geomorphological Research,
8(3), 183-202. [In Persian]
https://dorl.net/dor/20.1001.1.22519424.1398.8.3.11.6
Aslan, G., Foumelis, M., Raucoules, D., De Michele, M., Bernardie, S., & Cakir, Z. (2020). Landslide mapping and monitoring using persistent scatterer interferometry (PSI) technique in the French Alps.
Remote Sensing,
12(8), 1305.
https://doi.org/10.3390/rs12081305
Burland, J. B., Broms, B. B., & De Mello, V. F. (1978). Behaviour of foundations and structures. Paper presented at the 9th International conference on soil mechanics and foundation engineering, 2,495-546 Tokyo, Japan: Japanese Society of Soil Mechanics and
Foundation Engineering.
Ciampalini, A., Bardi, F., Bianchini, S., Frodella, W., Del Ventisette, C., Moretti, S., & Casagli, N. (2014). Analysis of building deformation in landslide area using multisensor PSInSAR™ technique.
International Journal of Applied Earth Observation and Geoinformation,
33, 166-180.
https://doi.org/10.1016/j.jag.2014.05.011
Cruden, D. M., & Varnes, D. J. (1996). Landslide types and processes, transportation research board, U.S. National Academy of Sciences, Special Report, 247: 36-75.
Entezam, I., Rezaei, A. R., Vakilzade, Y., Mohammadi, Y., & Babazade, N. (2019).
Evaluation and analysis of the Hosein Abad Kalpush landslide.
Report TR040, National Geoscience Database of Iran. [In Persian]
Ferlisi, S., Gullà, G., Nicodemo, G., & Peduto, D. (2019). A multi-scale methodological approach for slow-moving landslide risk mitigation in urban areas, southern Italy.
Euro-Mediterranean Journal for Environmental Integration,
4, 1-15.
https://doi.org/10.1007/s41207-019-0110-4
Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry.
IEEE Transactions on Geoscience and Remote Sensing,
39(1), 8-20.
https://doi.org/10.1109/36.898661
Glade, T. (2003). Vulnerability assessment in landslide risk analysis. Erde, 134(2), 123-146.
Godfrey, A., Ciurean, R. L., Van Westen, C. J., Kingma, N. C., & Glade, T. (2015). Assessing vulnerability of buildings to hydro-meteorological hazards using an expert based approach–An application in Nehoiu Valley, Romania.
International Journal of Disaster Risk Reduction,
13, 229-241.
https://doi.org/10.1016/j.ijdrr.2015.06.001
Grünthal, G. (1998). European macroseismic scale 1998. Luxembourg: European Seismological Commission (ESC).
Guo, C., Zhang, Y., Li, X., Ren, S., Yang, Z., Wu, R., & Jin, J. (2020). Reactivation of giant Jiangdingya ancient landslide in Zhouqu County, Gansu Province, China.
Landslides,
17, 179-190.
https://doi.org/10.1007/s10346-019-01266-9
Hooper, A., Segall, P. & Zebker, H. (2007). Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis with application to Volcán Alcedo, Galápagos.
Journal of Geophysical Research, 112.
https://doi.org/10.1029/2006JB004763
Infante, D., Di Martire, D., Confuorto, P., Tessitore, S., Tòmas, R., Calcaterra, D., & Ramondini, M. (2019). Assessment of building behavior in slow-moving landslide-affected areas through DInSAR data and structural analysis.
Engineering Structures,
199, 109638.
https://doi.org/10.1016/j.engstruct.2019.109638
Kappes, M. S., Papathoma-Koehle, M., & Keiler, M. (2012). Assessing physical vulnerability for multi-hazards using an indicator-based methodology.
Applied Geography,
32(2), 577-590.
https://doi.org/10.1016/j.apgeog.2011.07.002
Khodaei Geshlag, L., Roostaei, S., Mokhtari, D., & Valizadeh Kamran, K. (2021). Application of the Interferometry Synthetic Aperture Radar (InSAR) in monitoring and evaluating landslides (case study: Ahar-Varzeghan region).
Journal of Geography and Planning,
25(75), 113-126. [In Persian]
https://doi.org/10.22034/gp.2021.10847
Kiseleva, Е., Mikhailov, V., Smolyaninova, E., Dmitriev, P., Golubev, V., Timoshkina, E., ... & Hanssen, R. (2014). PS-InSAR monitoring of landslide activity in the Black Sea coast of the Caucasus.
Procedia Technology,
16, 404-413.
https://doi.org/10.1016/j.protcy.2014.10.106
Leone, F., Asté, J. P., & Leroi, E. (1996). Vulnerability assessment of elements exposed to mass-movement: working toward a better risk perception. Landslides, 1,263-270.
Li, Z., Nadim, F., Huang, H., Uzielli, M., & Lacasse, S. (2010). Quantitative vulnerability estimation for scenario-based landslide hazards.
Landslides,
7, 125-134.
https://doi.org/10.1007/s10346-009-0190-3
Lu, P., Catani, F., Tofani, V., & Casagli, N. (2014). Quantitative hazard and risk assessment for slow-moving landslides from Persistent Scatterer Interferometry.
Landslides,
11, 685-696.
https://doi.org/10.1007/s10346-013-0432-2
Mateos, R. M., Azañón, J. M., Roldán, F. J., Notti, D., Pérez-Peña, V., Galve, J. P., ... & Fernández-Chacón, F. (2017). The combined use of PSInSAR and UAV photogrammetry techniques for the analysis of the kinematics of a coastal landslide affecting an urban area (SE Spain).
Landslides,
14, 743-754.
https://doi.org/10.1007/s10346-016-0723-5
Notti, D., Galve, J. P., Mateos, R. M., Monserrat, O., Lamas-Fernández, F., Fernández-Chacón, F., ... & Azañón, J. M. (2015). Human-induced coastal landslide reactivation, Monitoring by PSInSAR techniques and urban damage survey (SE Spain).
Landslides, 12, 1007-1014.
https://doi.org/10.1007/s10346-015-0612-3
Palmisano, F. (2011). Landslide structural vulnerability of masonry buildings. PhD Thesis, Italy, Politecnico di Bari.
Papathoma-Köhle, M., Neuhäuser, B., Ratzinger, K., Wenzel, H., & Dominey-Howes, D. (2007). Elements at risk as a framework for assessing the vulnerability of communities to landslides.
Natural Hazards and Earth System Sciences,
7(6), 765-779.
https://doi.org/10.5194/nhess-7-765-2007
Rezapour, A., Jabari, I., & Bahrami, K. (2022). Geomorphological and geological evidences of the old landslide in Mele Kabud.
Quaternary Journal of Iran,
8(1, 2), 179-199. [In Persian]
https://doi.org/10.22034/irqua.2022.702493
Shirani, K. (2018). Detection, monitoring and mechanism of landslide using persistent scattering ineterferometry (PSI).
Journal of Water and Soil Science,
22(3),213-234. [In Persian]
http://dx.doi.org/10.29252/jstnar.22.3.213
Tang, H. M., Wasowski, J., Juang, C. H. )2019(. Geohazards in the three Gorges Reservoir
Area, China – Lessons learned from decades of research.
Engineering Geology, 261,
105267.
https://doi.org/10.1016/j.enggeo.2019.105267
Tian, J. J., Li, T. T., Pei, X. J., Ding, F., Sun, H., Xie, X. G., & Guo, J. (2022). Formation and reactivation mechanisms of large-scale ancient landslides in the Longwu River basin in the northeast Tibetan Plateau, China.
Journal of Mountain Science, 19(6), 1558-1575.
https://doi.org/10.1007/s11629-021-7261-x
Uzielli, M., Nadim, F., Lacasse, S., & Kaynia, A. M. (2008). A conceptual framework for quantitative estimation of physical vulnerability to landslides.
Engineering Geology, 102(3-4), 251-256.
https://doi.org/10.1016/j.enggeo.2008.03.011
Van Westen, C. J., Van Asch, T. W., & Soeters, R. (2006). Landslide hazard and risk zonation-why is it still so difficult?.
Bulletin of Engineering geology and the Environment, 65, 167-184.
https://doi.org/10.1007/s10064-005-0023-0
Wolter, A., Stead, D., Ward, B. C., Clague, J. J., & Ghirotti, M. (2016). Engineering geomorphological characterisation of the Vajont Slide, Italy, and a new interpretation of the chronology and evolution of the landslide.
Landslides, 13, 1067-1081.
https://doi.org/10.1007/s10346-015-0668-0
Zhang, C., Yin, Y., Dai, Z., Huang, B., Zhang, Z., Jiang, X., Tan, W., & Wang, L. (2021). Reactivation mechanism of a large-scale ancient landslide.
Landslides, 18, 397-407.
https://doi.org/10.1007/s10346-020-01538-9
Send comment about this article