ارزیابی پتانسیل خطر آتش‌سوزی با‌ استفاده از رویکردهای تحلیل سلسله مراتبی فازی و رگرسیون لجستیک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی طبیعت. دانشکده کشاورزی شیروان. دانشگاه بجنورد. بجنورد. ایران

2 استادیار پژوهشی، بخش تحقیقات منابع طبیعی مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان گلستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، گرگان، ایران

چکیده

امروزه تهیه نقشه توزیع مکانی خطر آتش‌سوزی یکی از ابزارهای ضروری مدیریت در سطوح مختلف جهت پایش پایداری منابع طبیعی و کنترل این مخاطره محیط‌زیستی است. تلفیق عملیات میدانی، داده‌های دورسنجی، تکنیک‌های سیستم اطلاعات جغرافیایی و آماری مختلف می‌تواند پیش‌بینی فضایی قابل‌اعتمادی از پتانسیل خطر آتش‌سوزی برای مناطق مختلف ایجاد کند. در این تحقیق از 9 عامل مؤثر در مدل‌سازی خطر آتش‌سوزی شامل عوامل ارتفاع، شیب، جهت، انحنای دامنه، فاصله از جاده و شاخص‌های NDVI، LST، TWI و TPI با دو روش تحلیل فازی سلسله مراتبی و رگرسیون لجستیک برای شناسایی مناطق خطر و تعیین مهم‌ترین عوامل مؤثر در بروز و گسترش آتش استفاده شد. برای شناسایی مناطق حریق تاریخی نیز از سامانه ابری گوگل ارث انجین و تصاویر مادیس استفاده شد. نتایج اولیه نشان داد در هر دو مدل، عوامل NDVI، LST و فاصله از جاده بیشترین ضرایب را به خود اختصاص داده‌اند. در مرحله صحت سنجی نیز اگرچه منحنی مشخصه عملکرد هر دو مدل، نسبتاً یکسان (مقدار 847/0 در روش تحلیل سلسله مراتبی فازی و مقدار 837/0 در روش رگرسیون لجستیک) بود، با بررسی پیکسل‌های حریق تاریخی مشخص شد در روش تحلیل سلسله مراتبی فازی حدود 87 درصد پیکسل‌های طبقات با خطر زیاد و خیلی زیاد و در روش رگرسیون لجستیک فقط 22 درصد پیکسل‌های طبقات مزبور با مناطق دارای سابقه حریق همپوشانی داشته‌اند. لذا به نظر می‌رسد روش تحلیل سلسله‌مراتبی فازی بهتر از روش رگرسیون لجستیک توانسته مناطق با پتانسیل خطر بالا را شناسایی کند. اگرچه تهیه نقشه­های پیش‌بینی خطر توسط مدل‌های مختلف از وقوع کلیه حریق­ها جلوگیری نخواهد کرد ولی می­توان با ارائه راهکارهای مدیریتی، وقوع آن را کاهش داده و کنترل آن را تسهیل نمود.

چکیده تصویری

ارزیابی پتانسیل خطر آتش‌سوزی با‌ استفاده از رویکردهای تحلیل سلسله مراتبی فازی و رگرسیون لجستیک

کلیدواژه‌ها


ابراهیمی، حمید؛ رسولی، علی‌اکبر؛ مختاری، داوود؛ 1397. بررسی تغییرات خطر آتش‌سوزی و عوامل مؤثر بر آن با استفاده از مدل حداکثر بی نظمی، مطالعه موردی: جنگل ها و مراتع استان آذربایجان شرقی. جغرافیا و مخاطرات محیطی. دوره 7. شماره 1. صص 73-57.             https://doi.org/10.22067/geo.v7i1.59628
اسکندری، سعیده؛ اسکندری، سمانه؛1400. آتش‌سوزی جنگل‌های ایران، پیامدها، روش‌های مقابله و راهکارها. انسان و محیط‌زیست. شماره 56. صص 187-175.  https://he.srbiau.ac.ir/article_10459.html
جانباز قبادی، غلامرضا؛ 1398. بررسی مناطق خطر آتش­سوزی جنگل در استان گلستان بر اساس شاخص خطر آتش­سوزی با بهره­گیری از تکنیک GIS. تحلیل فضایی مخاطرات محیطی. دوره 6. شماره 3. صص 102-89.https://doi.org/10.29252/jsaeh.6.3.89
حیدری، مهدی؛ عطار روشن، سینا؛ جافریان، الهام؛ عبیات، محمد؛ 1400. مدل‌سازی و پهنه‌بندی مناطق مستعد آتش‌سوزی در جنگل‌های زاگرس با استفاده از سامانه اطلاعات جغرافیایی بر پایه رگرسیون لجستیک. جغرافیا و مخاطرات محیطی. دوره 10. شماره 2. صص 58-43.
زارع چاهوکی، محمدعلی؛ 1398. معیارها و شاخص‌های مؤثر در ارزیابی پایداری منابع طبیعی. پژوهش‌های راهبردی در علوم کشاورزی و منابع طبیعی. دوره 4. شماره 1. صص 16-1.
شریف نژاد، طوبی؛ خاوریان نهزک، حسن؛ ورامش، سعید؛ 1400. ارزیابی قابلیت محصولات آتش سنجنده مادیس در شناسایی آتش‌‌سوزی‌‌ها در استان گلستان. مخاطرات محیط طبیعی. دوره 10. شماره 30. صص 16-1. https://doi.org/10.22111/jneh.2021.34138.1661
عابدی قشلاقی، حسن؛ ولی زاده، خلیل؛ 1397. ارزیابی و پهنه بندی خطر آتش‌سوزی جنگل با استفاده از تکنیک­های تصمیم­گیری چند معیاره و GIS. مخاطرات طبیعی. دوره 7. شماره 15. صص 66-49.
علی‌نیا، اکرم؛ گندمکار، امیر؛ عباسی، علیرضا؛ 1400. تحلیل زمانی - مکانی رخدادهای مخاطره آتش‌سوزی‌های طبیعی در استان لرستان با استفاده از محصولات سنجندة مادیس. جغرافیا و پایداری محیط. دوره 11. شماره 1. صص 127-113.
مرکز پژوهش‌های مجلس شورای اسلامی؛ 1399. علل، آثار، چالش‌ها و راهکارهای مقابله با آتش‌سوزی‌های جنگل‌ها و مراتع کشور. معاونت پژوهش­های تولیدی و زیربنایی. شماره مسلسل: 17288. 65 ص.
 
Abedi Gheshlaghi, H., Feizizadeh, B., Blaschke, T., 2020. GIS-based forest fire risk mapping using the analytical network process and fuzzy logic. Journal of Environmental Planning Management, 63, 481–499. https://doi.org/10.1080/09640568.2019.1594726
Abedi, R., 2022. Application of multi-criteria decision making models to forest fire management.  International Journal of Geoheritage and Parks, 10 (1): 84-96. https://doi.org/10.1016/j.ijgeop.2022.02.005
Ågren, A.M., Lidberg, W., Strömgren, M., Ogilvie, J., Arp, P.A., 2014. Evaluating digital terrain indices for soil wetness mapping–a Swedish case study. Hydrology and Earth System Sciences. 18(9): 3623–34. https://doi.org/10.5194/hess-18-3623-2014, 2014
Ajin, R.S., Loghin, A.M., Vinod, P.G., Jacob, M.K., 2017. Forest fire risk zone mapping using RS and GIS techniques a study in Achankovil Forest Division, Kerala, India. Journal of Earth, Environment and Health Sciences, 23: 109–115. https://doi.org/10.4103/2423-7752.199288
Ayanlade, A., 2016. Variation in diurnal and seasonal urban land surface temperature: landuse change impacts assessment over Lagos metropolitan city. Modeling Earth Systems and Environment. 2, 193.https://doi.org/10.1007/s40808-016-0238-z
Busico, G., Giuditta, E., Kazakis, N., Colombani, N., 2019. A Hybrid GIS and AHP Approach for Modelling Actual and Future Forest Fire Risk Under Climate Change Accounting Water Resources Attenuation Role. Sustainability. 11(24), 7166. https://doi.org/10.3390/su11247166
Cavdaroglu, G., 2021. Google Earth Engine Based Approach for Finding Fire Locations and Burned Areas in Muğla, Turkey. American Journal of Remote Sensing. 9 (2): 72-77.https://doi.org/10.11648/j.ajrs.20210902.12
Chuvieco, E., Aguado, I., Yebra, M., Nieto, H., Salas, J., Martín, M.P., Vilar, L., Martínez-Vega, J., Martín, S., Ibarra, P., et al. 2010. Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecological Modelling. 221: 46–58.https://doi.org/10.1016/j.ecolmodel.2008.11.017
Çolak, E., Sunar, F., 2020. Evaluation of forest fire risk in the Mediterranean Turkish forests: A case study of Menderes region, Izmir. International Journal of Disaster Risk Reduction. 45, 101479.https://doi.org/10.1016/j.ijdrr.2020.101479
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., Böhner, J., 2015. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991-2007. https://doi.org/10.5194/gmd-8-1991-2015
Erdin, C., Çağlar, M., 2021. Rural Fire Risk Assessment in GIS Environment Using Fuzzy Logic and the AHP Approaches. Polish Journal of Environmental Studies, 30(6), 4971-4984. https://doi.org/10.15244/pjoes/136009
Eskandari, S., Miesel, JR., 2017. Comparison of the fuzzy AHP method, the spatial correlation method, and the Dong model to predict the fire high-risk areas in Hyrcanian forests of Iran. Geomatics, Natural Hazards and Risk, 8:2, 933-949.https://doi.org/10.1080/19475705.2017.1289249
Faramarzi, H., Hosseini, SM., Pourghasemi, HR., Farnaghi, M., 2021. Forest fire spatial modelling using ordered weighted averaging multi-criteria evaluation. Journal of Forest Science, 67, 87−100. https://doi.org/10.17221/50/2020-JFS
Fassnacht, F., Schmidt-Riese, E., Kattenborn, T., Hernández, J., 2021. Explaining Sentinel 2-based dNBR and RdNBR variability with reference data from the bird’s eye (UAS) perspective. International Journal of Applied Earth Observation and Geoinformation, 95, 102262.https://doi.org/10.1016/j.jag.2020.102262
Giglioa, L., Descloitresa, J., Justicec, C., Kaufman, Y.J., 2003. An enhanced contextual fire detection algorithm for MODIS. Remote Sensing of Environment. 87: 273–282.https://doi.org/10.1016/S0034-4257(03)00184-6
Hislop, S., Haywoodc, A., Jonesa, S., Soto-Berelova,M., Skidmore A., Nguyena, T., 2020. A satellite data driven approach to monitoring and reporting fire disturbance and recovery across boreal and temperate forests. International Journal of Applied Earth Observation Geoinformation. 87. https://doi.org/10.1016/j.jag.2019.102034
Jaafari, A., Mafi-Gholami, D., Pham, B.T., Tien Bui, D., 2019. Wildfire probability mapping: Bivariate vs. multivariate statistics. Remote Sensing. 11, 618. https://doi.org/10.3390/rs11060618
Li, J., Zhao, Y., Zhang, A., Song, B., Hill, R.L., 2021. Effect of grazing exclusion on nitrous oxide emissions during freeze-thaw cycles in a typical steppe of Inner Mongolia. Agriculture Ecosystem Environment. 307, 107217. https://doi.org/10.1016/j.agee.2020.107217
Masinda, M.M., Sun, L., Wang, G., Hu, T., 2021. Moisture content thresholds for ignition and rate of fire spread for various dead fuels in northeast forest ecosystems of China. Journal of Forestry Research. 32: 1147–1155. https://doi.org/10.1007/s11676-020-01162-2
Mattivi, P., Franci, F., Lambertini, A. Bitelli, G., 2019. TWI computation: a comparison of different open source GISs. Open Geospatial Data, Software and Standards. 4, 6. https://doi.org/10.1186/s40965-019-0066-y
Novo, A., Fariñas-Álvarez, N., Martínez-Sánchez, J., González-Jorge, H., Fernández-Alonso, JM., Lorenzo, H., 2020. Mapping forest fire risk—a case study in Galicia (Spain). Remote Sensing. 12(22):1–20. https://doi.org/10.3390/rs12223705
Nuthammachot, N., Stratoulias, D. 2021. A GIS-and AHP-based approach to map fire risk: A case study of Kuan Kreng peat swamp forest, Thailand. Geocarto International., 36, 212–225.https://doi.org/10.1080/10106049.2019.1611946
Pham, B.T., Jaafari, A., Phong, T.V., Yen, H., Tuyen, T., Luong, V., Nguyen, H.D., Le, H.V., Foong, L.K., 2021. Improved flood susceptibility mapping using a best first decision tree integrated with ensemble learning techniques. Geoscience Frontiers. 12, 101105.https://doi.org/10.1016/j.gsf.2020.11.003
Piao, Y., Lee, D., Park, S., Gul, H. Jin, Y., 2022. Forest fire susceptibility assessment using google earth engine in Gangwon-do, Republic of Korea. Geomatics, Natural Hazards and Risk. 13(1): 432-450. https://doi.org/10.1080/19475705.2022.2030808
Pourghasemi, H.R., 2015. GIS-based forest fire susceptibility mapping in Iran a comparison between evidential belief function and binary logistic regression models. Scandinavian Journal of Forest Research, 9(3), 155–165. https://doi.org/10.1080/02827581.2015.1052750
Pourghasemi, H.R., Beheshtirad, M., Pradhan, B., 2016. A comparative assessment of prediction capabilities of modified analytical hierarchy process (MAHP) and Mamdani fuzzy logic models using Netcad-GIS for forest fire susceptibility mapping. Geomatics, Natural Hazards and Risk, 7(2):861–885. https://doi.org/10.1080/19475705.2014.984247
Saaty, L.T., 1984. The Analytic Hierarchy Process: Decision Making in Complex Environments. In: Avenhaus, R., Huber, R.K. (eds) Quantitative Assessment in Arms Control. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2805-6_12
Tomar, J.S., Kranjcic, N., Ðurin, B., Kanga, S., Singh, S.K. 2021. Forest Fire Hazards Vulnerability and Risk Assessment in Sirmaur District Forest of Himachal Pradesh (India): A Geospatial Approach. ISPRS International Journal of Geo-Information. 10, 447. https://doi.org/10.3390/ijgi10070447
Venkatesh, K., Preethi, K., Ramesh, H., 2020. Evaluating the effects of forest fire on water balance using fire susceptibility maps. Ecological Indicators. 110, 105856.https://doi.org/10.1016/j.ecolind.2019.105856
Yathish, H., Athira, K.V., Preethi, K., Pruthviraj, U., Shetty, A., 2019. A Comparative Analysis of Forest Fire Risk Zone Mapping Methods with Expert Knowledge. Journal of the Indian Society of Remote Sensing. 47: 2047-2060. https://doi.org/10.1007/s12524-019-01047-w
Zareian, G.R., Azadi, A. and Shakeri, S., 2021. Evaluation of soil fertility map for bean cultivation in Eghlid Plain by using Hybrid Fuzzy-AHP and GIS techniques. Iran Agricultural Research, 40(1):101-112. https:// iar.shirazu.ac.ir/ article_ 6291_ 533038d9a 7eeebb64d797f9eb3b6d291.pdf?lang=fa
 
 
CAPTCHA Image