برآورد نرخ فرونشست دشت ایوانکی و تحلیل نقش فعالیت‌های انسانی در وقوع آن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده علوم جغرافیایی دانشگاه خوارزمی تهران

2 دانشگاه خوارزمی

10.22067/geoeh.2024.87559.1477

چکیده

فرونشست زمین مخاطره­ای است که بسیاری از دشت­­های ایران ازجمله دشت ایوانکی در استان سمنان را دربرگرفته است. دشت ایوانکی تحت تأثیر وضعیت اقلیمی و توپوگرافی، پتانسیل بالایی از نظر وقوع مخاطره فرونشست دارد. با توجه به اهمیت موضوع، در این پژوهش به برآورد وضعیت فرونشست دشت ایوانکی و تحلیل عوامل مؤثر در وقوع آن پرداخته شده است. در این تحقیق از تصاویر راداری سنتینل 1، تصاویر ماهواره لندست و اطلاعات مربوط به چاه­های پیزومتری منطقه به­عنوان مهم­ترین داده­های تحقیق استفاده شده است. مهم­ترین ابزارهای پژوهش، GMT­، ArcGIS­، ENVI و SPSS بوده است. با توجه به موضوع و اهداف مورد نظر، در این پژوهش ابتدا به ارزیابی وضعیت فرونشست منطقه در طی سال­های 2016 تا 2022 و سپس به ارزیابی تأثیر افت منابع آب زیرزمینی و تغییرات کاربری اراضی در فرونشست رخ داده پرداخته شده است. بر اساس نتایج حاصله، محدوده مطالعاتی در طی دوره زمانی 6 ساله بین 28 تا 533 میلی­متر فرونشست داشته که رقم قابل‌توجهی می­باشد. آنالیز مکانی فرونشست رخ داده بیانگر این است که بیش­ترین میزان فرونشست مربوط به مناطق جنوبی دشت ایوانکی بوده است که این مناطق نیز سالانه با افت سطح آب زیرزمینی حدود 2 متر مواجه شده است، بر این اساس، یکی از دلایل فرونشست رخ داده، افت منابع آب زیرزمینی بوده است. همچنین بر اساس نتایج حاصله، کاربری نواحی انسان­ساخت و اراضی کشاورزی در طی سال­های 1992 تا 2022 به ترتیب با 9/6 و 2/7 کیلومترمربع افزایش مواجه شده­اند و با توجه به اینکه بیش­ترین میزان فرونشست (بیش از 500 میلی­متر) در محدوده این کاربری­ها بوده است، بنابراین توسعه اراضی کشاورزی و نواحی انسان­ساخت، عامل اصلی وقوع فرونشست منطقه بوده است.

کلیدواژه‌ها

موضوعات


Amighpey, M., Arabi, S., & Talebi, A. (2010). Studying Yazd Subsidence Using InSAR and Precise Leveling. Scientific Quarterly Journal of Geosciences20(77), 157-164. [In Persian] https://doi.org/10.22071/gsj.2010.55368
Asadi, M., Ganjaeian, H., Javedani, M., & Ghaderi Hasab, M. (2021). Evaluation of the Relationship between Natural Factors and Subsidence in Ivanaki Plain Using Radar Imaging. Hydrogeology6(1), 13-22. [In Persian] https://doi.org/10.22034/hydro.2021.13016
Asghari Saraskanroud, S., & Mohamadzadeh Shishegaran, M. (2021). Estimation of subsidence using radar interferometry technique and groundwater parameters and land use (Case study: shahryar plain). Quantitative Geomorphological Research10(1), 40-54. [In Persian] https://doi.org/10.22034/gmpj.2021.258196.1229
Babaei, S., Khazaei, S., & Qasere Mobarakeh, F. (2017). Interferometric Processing Time Series COSMO-SkyMed Pictures to Calculate Subsidence Rate of the Ground and Underground Structures. Journal of Geomatics Science and Technology, 7(1), 55-67. [In Persian] http://dorl.net/dor/20.1001.1.2322102.1396.7.1.5.5
Bokhari, R., Shu, H., Tariq, A., Al-Ansari, N., Guluzade, R., Chen, T., ... & Aslam, M. (2023). Land subsidence analysis using synthetic aperture radar data. Heliyon9(3), e14690. https://doi.org/10.1016/j.heliyon.2023.e14690
Bozzano, F., Esposito, C., Franchi, S., Mazzanti, P., Perissin, D., Rocca, A., & Romano, E. (2015). Understanding the subsidence process of a quaternary plain by combining geological and hydrogeological modelling with satellite InSAR data: The Acque Albule Plain case study. Remote Sensing of Environment168, 219-238. https://doi.org/10.1016/j.rse.2015.07.010
Chen, B., Gong, H., Li, X., Lei, K., Ke, Y., Duan, G., & Zhou, C. (2015). Spatial correlation between land subsidence and urbanization in Beijing, China. Natural Hazards75, 2637-2652. https://doi.org/10.1007/s11069-014-1451-6
Da Lio, C., & Tosi, L. (2018). Land subsidence in the Friuli Venezia Giulia coastal plain, Italy: 1992–2010 results from SAR-based interferometry. Science of the Total Environment633, 752-764. https://doi.org/10.1016/j.scitotenv.2018.03.244
Delinom, R. M., Assegaf, A., Abidin, H. Z., Taniguchi, M., Suherman, D., Lubis, R. F., & Yulianto, E. (2009). The contribution of human activities to subsurface environment degradation in Greater Jakarta Area, Indonesia. Science of the Total Environment407(9), 3129-3141. https://doi.org/10.1016/j.scitotenv.2008.10.003
Ebadati, N. (2015). Trend assessment of changes in water quality plain Eyvanakey. Iranian Journal of Ecohydrology2(4), 383-394. [In Persian] https://doi.org/10.22059/ije.2015.58064
Ganjaeian, H. (2019). Geomorphological hazards of urban areas, study methods and control strategies. Tehran: EnteKhab Publishing. [In Persian]
Ganjaeian, H., Asadi, M., Menbari, F., & Ebrahimi, A. (2023). Analysis of Subsidence Status in Hamedan Urban Area using Radar and Satellite Images. Journal of Geography and Environmental Hazards11(4), 221-236. [In Persian]  https://doi.org/10.22067/geoeh.2022.76383.1217
Gharechelou, S., Akbari Ghoochani, H., Golian, S., & Ganji, K. (2021). Evaluation of land subsidence relationship with groundwater depletion using Sentinel-1 and ALOS-1 radar data (Case study: Mashhad plain). Journal of RS and GIS for Natural Resources12(3), 40-61.[In Persian] https://doi.org/10.30495/girs.2021.680336
Hasibuan, H. S., Tambunan, R. P., Rukmana, D., Permana, C. T., Elizandri, B. N., Putra, G. A. Y., ... & Ristya, Y. (2023). Policymaking and the spatial characteristics of land subsidence in North Jakarta. City and Environment Interactions18, 100103. https://doi.org/10.1016/j.cacint.2023.100103
Hosseinzadeh, S. R., Akbari, E., Javanshiri, M., & Mohammadpour, Z. (2023). Spatial Analysis of Ground Subsidence using Radar Interferometry (Case Study: Central Plain of Ghaen City). Journal of Geography and Environmental Hazards11(4), 99-126. [In Persian] https://doi.org/10.22067/geoeh.2022.75138.1169
Hsieh, C. S., Shih, T. Y., Hu, J. C., Tung, H., Huang, M. H., & Angelier, J. (2011). Using differential SAR interferometry to map land subsidence: a case study in the Pingtung Plain of SW Taiwan. Natural Hazards58, 1311-1332. https://doi.org/10.1007/s11069-011-9734-7
Jiang, C., Liu, D., Jiang, C., Wang, Q., Sadat-Noori, M., & Li, H. (2023). Tracing groundwater discharge into a coal mining subsidence lake in eastern China: Observations from water stable (δD and δ18O) and radon (222Rn) isotope. Applied Geochemistry, 156, 105757. https://doi.org/10.1016/j.apgeochem.2023.105757
Khan, S. D., Faiz, M. I., Gadea, C. A., & Ahmad, A. (2023). Study of land subsidence by radar interferometry and hot spot analysis techniques in the Peshawar Basin, Pakista. The Egyptian Journal of Remote Sensing and Space Science, 26 (1), 173-184. https://doi.org/10.1016/j.ejrs.2023.02.001
Kim, J. S., Kim, D. J., Kim, S. W., Won, J. S., & Moon, W. M. (2007). Monitoring of urban land surface subsidence using PSInSAR. Geosciences Journal11, 59-73. https://doi.org/10.1007/BF02910381
Li, W., Wang, Y., Wang, G., Liang, Y., Li, C., & Svenning, J.C. (2023). How do rotifer communities respond to floating photovoltaic systems in the subsidence wetlands created by underground coal mining in China? Journal of Environmental Management, 339,117816. https://doi.org/10.1016/j.jenvman.2023.117816
Malik, K., Kumar, D., Perissin, D., & Pradhan, B. (2022). Estimation of ground subsidence of New Delhi, India using PS-InSAR technique and Multi-sensor Radar data. Advances in Space Research, 69(4), 1863-1882. https://doi.org/10.1016/j.asr.2021.08.032
Mehrabi, A., Karimi, S., & Khalesi, M. (2023). Spatial Analysis of Jiroft Plain Subsidence Using the Coherence Pixel Technique (CPT). Geography and Environmental Planning34(1), 99-116.[In Persian] https://doi.org/10.22108/gep.2022.133667.1525
Saffari, A., Jafari, F., & Tavakoli Sabour, S. (2018). Monitoring its land subsidence and its relation to groundwater harvesting Case study: Karaj Plain - Shahriar. Quantitative Geomorphological Research5(2), 82-93. [In Persian] https://dorl.net/dor/20.1001.1.22519424.1395.5.2.6.8  
 
 
CAPTCHA Image