ارزیابی کارایی فنون هوش مصنوعی در مطالعات زمین‌لغزش با تاکید بر الگوریتم SVM (مطالعه موردی: حوضه آبریز درکه)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه تهران

2 دانشگاه خوارزمی

3 دانشگاه تربیت مدرس

چکیده

الگوریتمSVM یا ماشین‌بردار پشتیبان، به عنوان یکی از روش‌های غیرپارامتریک بر پایه تئوری یادگیری آماری بنا شده است. بر اساس این تئوری، می‌توان کران نرخ خطای ماشین یادگیری را برای داده‌‌های طبقه‌بندی نشده، به عنوان نرخ خطای تعمیم یافته، در نظرگرفت. در این تحقیق، با استفاده از توابع حلقوی، چندجمله‌ای، شعاعی و خطی در الگوریتم SVM و معیارهای مؤثر در شناسایی مناطق حساس به زمین‌لغزش شامل: فاصله (از گسل، شبکه زهکشی)، لیتولوژی، شیب (مقدار، زاویه) و سطح ارتفاعی به ارزیابی قابلیت وقوع زمین‌لغرش در حوضه‌ آبریز درکه در شمال شهر تهران پرداخته شده است. بدین منظور لایه‌های مکانی معیارهای شش‌گانه مذکور به پایگاه داده مکانی وارد و سپس استانداردسازی بر روی معیارها انجام شد و در نهایت توابع ماشین بردار پشتیبان اجرا گردید تا پهنه‌های حساس به زمین‌لغزش مشخص گردد. نتایج تحقیق نشان داد بر اساس تابع خطی بیشتر پهنه حوضه آبریز درکه حساسیت متوسطی به رخداد زمین‌لغزش دارد. نقشه خروجی بر طبق توابع چندجمله‌ای و شعاعی نیز به ترتیب بیانگر حساسیت‌پذیری متوسط به بالای حوضه، حساسیت بیشتر قسمت غربی حوضه به زمین‌لغزش است. بر اساس خروجی حاصل از تابع حلقوی اکثر پهنه این حوضه حساسیت متوسط تا بالایی را نشان می‌دهد. حداکثر و حداقل مساحت احتمالی حساس به زمین‌لغرش با 30 و 20 کیلومترمربع به ترتیب متعلق به توابع حلقوی و شعاعی است. در بین توابع اجرا شده، تابع حلقوی به خاطر انطباق بیشتر با واقعیت، بهترین عملکرد و تابع خطی از نظرعملکرد، پایین‌ترین دقت را نشان داد.

کلیدواژه‌ها


Atkinson, P., Massari, I., 1998. Generalized linear modeling of landslide susceptibility in the Central Apennines, Italy. Computers & Geosciences 24, 373–385.
Ayalew, L., yamagishi, H., 2005. The applicationof GIS-based logistic regression for landslide susceptibility mapping in the kakuda-yahiko Mountains, central Japan, Geomorphology. 65, 15-31.
Ayalew, L., Yamagishi, H., Ugawa, N., 2004. Landslide susceptibility mapping using GIS based weighted linear combination. the case in Tsugawa area of Agano River. Niigata Prefecture, Japan. Landslide 1, 73–81.
Bai. S, J., Wang, Lü, P., Zhou, S., Hou, S. Xu., 2010. GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area. China, Geomorphology 115 , 23–31.
Ballabio. C., S. Sterlacchini., 2012. Support Vector Machines for Landslide Susceptibility Mapping: The Staffora River Basin Case Study. Italy, Math Geosci, 44, 47–70.
Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V., Reichenbach, P., 1991. GIS techniques and statistical models in evaluating landslide hazard. Earth Surface Processes and Landforms 16, 427–445.
Dai, F.C., Lee, C.F., 2001. Terrain-based mapping of landslide susceptibility using a geographical information system: a case study. Canadian Geotechnical Journal 38, 911–923.
Ermini, L., Catani, F., Casagli, N., 2005. Artificial Neural Networks applied to landslide susceptibility assessment. Geomorphology 66, 327–343.
Ghanavati. E., 2011. Landslide hazard zonation in Jajrud Basin Using Hierarchical Analysis Method. Journal of Applied Research Geographical Sciences 20, 51- 68.
Guzzetti, F., Carrara, A., Cardinali, M., Reichenbach, P., 1999. Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study. central Italy. Geomorphology 31, 181–216.
Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali, M., Galli, M., 2006.Estimating the quality of landslide susceptibility models. Geomorphology 81, 166–184.
Hashemi. S. H., J. Karami., J. Amini., A. Alimohamadi., 2010, Zoning areas susceptible to landslides using Fuzzy Topsis algorithms and GIS (Case Study: Lorestan Province). Journal of Remote Sensing and GIS 8, 23- 36.
Hastie, T., Tibshirani, R., Friedman, J.H., 2001. The Elements of Statistical Learning: Data Mining. Inference and Prediction. Springer Verlag, New York.
Hattanji. T., H. Moriwaki., 2009. Morphometric analysis of relic landslides using detailed landslide distribution maps: Implications for forecasting travel distance of future landslides, Geomorphology 103, 447–454.
Hosainezadeh. M., M. Servati., A. Mansouri., B. Mirbagheri., S. Khezri., 2009. Zoning risk of mass movements using a logistic regression model (case study: the path of the Sanandaj - Dehgolan). journal of Iran Geology 11, 27- 37.
Jade, S., Sarkar, S., 1993. Statistical models for slope stability classification. Engineering Geology 36, 91–98.
Kanungo, D.P., Arora, M.K., Sarkar, S., Gupta, R.P., 2006. A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas.Engineering Geology 85, 347–366.
Karam.A., 2004. Application of Linear mixed models in landslide occurrence potential zonation (Case Study: Sarkhon area in Charmahal and Bakhteyari Province). Journal of Geography and Development 4, 131- 146.
Karimisangchini. E., M. Onagh., A. Sadaldin., A. Najafinejad., 2010. Landslide hazard zonation using multiple regression statistical methods and GIS in Chel Chay basin of Golestan province. Journal of Forest and Range 88, 20- 26.
Khaledi. Sh., Kh. Derafshi., A. Mehrjo., S. gharehchhi., Sh. Khaledi., 2012. Assessment of the landslide effective factors and zonation of this event using logestic regression in the GIS environment: the Taleghan watershed case study). Quarterly of Geography and Environmental Hazards 1, 65- 82.
Komac, M., 2005. A landslide susceptibility model using the analytical hierarchy process method and multivariate statistics in perialpine Slovenia. Geomorphology 74, 17–28.
Lee, S., Ryu, J.H.,Won, J.S., Park, H.J., 2004. Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Engineering Geology 71, 289–302.
Lin. Y., H. J. Chu., C. F. Wu., 2010,Spatial pattern analysis of landslide using landscape metrics and logistic regression: a case study in Central Taiwan, Hydrol. Earth Syst. Sci. Discuss 7, 3423–3451.
Marjanovic. M., M, Kovacevic., B. Bajat., V. Vozenilek., 2011. Landslide susceptibility assessment using SVM machine learning algorithm. Engineering Geology 123, 225–234.
Mohamadi. M., H. Moradi., S. Faiznia., H. Pourghasemi., 2009, Priority of influencing factors and landslide hazard mapping using models of data and analytic hierarchy process (case study: part of Haraz watershed). Journal of Earth Sciences, 27- 32.
Moradi. H., H. Pourghasemi., M. Mohamadi., M. Mahdavifar., 2010, Landslide hazard zonation using fuzzy gamma operator (Case Study: Haraz watershed). Journal of Environmental Sciences 4, 129- 142.
Mosavikhatir. S. Z., A. Kavian., K. Solaimani., 2010. Preparation of Landslide susceptibility map in Sejarod Basin Using a logistic regression model. Journal of Science and Technology of Agriculture and Natural Resources 53, 99- 111.
Mosfaei, J., M. Onagh., Z. Faridkia., 2009. Landslide hazard zonation using the correlation equation modeling and hierarchical analysis (case study: Alamut River Watershed). Journal of Forest and Range 84, 50- 57.
Niazi. Y., M. Ekhtesasi., A. Talebi., S. Arkhi., M. H. Mokhtari., 2010. Performance evaluation of two multivariate statistical model to predict landslide hazard (case study: Ilam dam area). Journal of sciences and Watershed Engineering Iran 10, 9- 20.
Ohlmacher, C.G., Davis, C.J., 2003. Using multiple regression and GIS technology to predict landslide hazard in northeast Kansas. USA.Engineering Geology 69, 331–343.
Pourghasemi. H., H. Moradi., S. M, Fatemioghda., M. Mahdavifar., 2009. Landslide risk assessment using a multi-criteria decision making in fuzzy. Journal of sciences and Watershed Engineering Iran 8, 51- 62.
Rakei. B., M. Khamehchian., P. Abdolmalaki., P. Giachi., 2007. Application of Artificial Neural Network in The landslide hazard zonation, Case Study: Safidargale area in Semnan province. Journal of Sciences 1, 57- 64.
Roering, J.J., Kirchner, J.W., Dietrich, W.E., 2005. Characterizing structural and lithologi controls on deep-seated landsliding: Implications for topographic relief andlandscape evolution in the Oregon Coast Range. USA. Geological Society of AmericaBulletin 117, 654–668.
S.sakar., D.P.Kanungo., G.S.Mehrotar., 1995. Landslide zonation: A case study in garhwal Himalaya. India, Mountain Research and Development, Vol1 5 (4), 300-301.
Scholkoph, B., Smola, A.J., Williamson, R.C., Bartlett, P.L., 2000. New support vector algorithms. Neural Computation 12, 1207–1245.
Suzen, M.L., Doyuran, V., 2004. Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu Catchment, Turkey. Engineering Geology 71, 303–321.
Vapnik, V.N., 1995. The Nature of Statistical Learning Theory. Springer Verlag, New York.
Xu. C., F. Dai., X. Xu., Y. Lee., 2012. GIS-based support vector machine modeling of earthquake triggered landslide susceptibility in the Jianjiang River watershed. China, Geomorphology 145–146, 70–80.
Yao, X., Tham, L.G., Dai, F.C., 2008. Landslide susceptibility mapping based on Support Vector Machine: a case study on natural slopes of Hong Kong. China. Geomorphology 101, 572–582.
Yesilnacar, E., Topal, T., 2005. Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study. Hendek region (Turkey). Engineering Geology 79, 251–266.
Yilmaz, I., 2010. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environmental Earth Sciences 61, 821–836.
Zhu. L., H. Jing-Feng., 2006. GIS-based logistic regression method for landslide susceptibility mapping in regional scale. Journal of Zhejiang University SCIENCE A 7 (12): 2007-2017.
CAPTCHA Image