Prioritization and Spatial Analysis of Flood Potential based on FUZZY-AHP Approach (Case Study: Ghamsar Watershed)

Document Type : Research Article

Authors

1 PhD Candidate in Watershed Management Sciences and Engineering, University of kashan, Kashan, Iran

2 Associate Professor in Watershed Management Sciences and Engineering, University of kashan, Kashan, Iran

Abstract

Flood is one of the natural disasters that can threaten economic, social and environmental sustainability activities. Therefore, identifying flood-prone areas in the basins is essential. The aim of this research was to prioritize and analyze flooding potential in Ghamsar watershed using multi-criteria decision making models and fuzzy logic. For this purpose, first, 14 effective criteria on basin flooding (including precipitation, elevation, land use, soil texture, lithology, distance to river, slope, drainage density, stream order, Topographic Wetness Index, Stream Power Index, flow accumulation, plan curvature, profile curvature) were identified. Rhen, pairwise comparisons were made between the criteria using the AHP method in Expert choice 11 software and the final weight of each criterion was obtained. Moreover, the criteria were fuzzified using linear and large fuzzy functions, and finally, the final weights obtained for each criterion were applied in the respective layers and the final flood risk map of the basin was prepared. The results of prioritizing quantitative and qualitative criteria based on the opinion of watershed management experts using the AHP method showed that among the 14 proposed criteria, the precipitation criterion with a final weight of 0.229 has the most impact on the flood risk of the basin. Moreover, the criteria of heavy to very heavy soil texture (0.499), Plvav stone unit (0.252), water areas and bare lands with final weights of 0.345 and 0.225, respectively, have a stronger role in the flood risk of the basin. The results of the final flood risk map of the basin showed that about 30.841, 27.056 and 12.406 percent of the total area of the basin are in the medium, high and very high flood risk categories, respectively, and these areas are located mostly in the central part and along the southeast of the basin. Therefore, knowing flood potential of the basin can be effective in formulating crisis management plans when faced with floods.

Graphical Abstract

Prioritization and Spatial Analysis of Flood Potential based on FUZZY-AHP Approach (Case Study: Ghamsar Watershed)

Keywords


حسین­زاده، محمدمهدی؛ پناهی، رؤیا؛ تربند، توران؛ 1399. پهنه‌بندی حساسیت سیل در حوضۀ آبریز سنقر در استان کرمانشاه. اکوهیدرولوژی. شماره 4. صص 873-889.
زیاری، کرامت اله؛ رجایی، سید عباس؛ داراب خانی، رسول؛ 1400. پهنه‌بندی ظرفیت سیل‌خیزی با استفاده از تحلیل سلسه‌مراتبی و منطق فازی در محیط GIS نمونه موردی: شهر ایلام. مدیریت بحران. شماره 1. صص 21-30. https://dorl.net/dor/20.1001.1.23453915.1400.10.1.2.2.
شهابی، هیمن؛ 1400. پهنه­بندی حساسیت وقوع سیل در مناطق شمالی ایران با استفاده از الگوریتم­های پیشرفته داده کاوی (منطقه موردمطالعه: حوزه آبخیز هراز). فصلنامه برنامه ریزی منطقه‌ای. شماره 41. صص 167-184. https://doi.org/10.30495/jzpm.2021.4246.
صالحی، اسماعیل؛ رفیعی، یوسف؛ فرزاد بهتاش، محمدرضا؛ آقابابایی، محمدتقی؛ 1392. پهنه­بندی خطر سیلاب شهری با استفاده از GIS و فرایند تحلیل سلسله مراتبی فازی (مطالعة موردی: تهران). محیط­شناسی. شماره 3. صص 179-188. https://doi.org/10.22059/jes.2013.35901.
عرب­عامری، علیرضا؛ پورقاسمی، حمیدرضا؛ شیرانی، کورش؛ 1396. پهنه­‏بندی حساسیت سیل­گیری با استفاده از روش ترکیبی نوین تئوری بیزین‌ـ‌ فرایند تحلیل سلسله‌مراتبی (مطالعۀ موردی: حوضۀ آبخیز نکا ـ استان مازندران). اکوهیدرولوژی. شماره 2. صص447-462. https://doi.org/10.22059/ije.2017.61481.
محمدپور، امیرحسین؛ وفائی­نژاد، علیرضا؛ 1399. ارزیابی خطرپذیری رخداد سیل در حوضه تجن با استفاده از سیستم اطالعات مکانی. اکوهیدرولوژی. شماره 3. صص 731-741.
میرموسوی، سید حسین؛ اسمعیلی، حسین؛ 1400. پهنه‌بندی نواحی سیل‌خیز با استفاده از سامانه اطلاعات جغرافیایی (GIS) و سنجش از دور (RS) مطالعه موردی: شهرستان داراب. مخاطرات محیط طبیعی. شماره 27. صص 21-46.
نجفی، اسماعیل؛ کریمی کردابادی، مرتضی؛ 1399. ارزیابی و پهنه‌بندی خطر سیلاب با استفاده از مدل ترکیبی AHP-FUZZY  با تأکید بر امنیت شهری (مطالعه موردی: منطقه یک کلان‌شهر تهران). جغرافیا و مخاطرات محیطی. شماره 34. صص 43-60. https://doi.org/10.22067/geo.v9i2.86110.
 
Bouamrane, A., Derdous, O., Dahri, N., Tachi, S.-E., Boutebba, K., and Bouziane, M. T., 2020. A comparison of the analytical hierarchy process and the fuzzy logic approach for flood susceptibility mapping in a semi-arid ungauged basin (Biskra basin: Algeria). International Journal of River Basin Management, 1-11. https://doi.org/10.1080/15715124.2020.1830786.
Cai, T., Li, X., Ding, X., Wang, J., and Zhan, J., 2019. Flood risk assessment based on hydrodynamic model and fuzzy comprehensive evaluation with GIS technique. International Journal of Disaster Risk Reduction, 35, 101077. https://doi.org/10.1016/j.ijdrr.2019.101077.
Costa, J. E.,1987. Hydraulics and basin morphometry of the largest flash floods in the conterminous United States. Journal of Hydrology, 93(3-4), 313-338. https://doi.org/10.1016/0022-1694(87)90102-8.
Costache, R., Barbulescu, A., & and Pham, Q. B., 2021. Integrated Framework for Detecting the Areas Prone to Flooding Generated by Flash-Floods in Small River Catchments. Water, 13(6), 1-24. https://doi.org/10.3390/w13060758.
Dano, U.L., Balogun, A.L., Matori, A.N., Wan Yusouf, K., Abubakar, I.R., Said Mohamed, M.A., Aina, Y.A. and Pradhan, B., 2019. Flood susceptibility mapping using GIS-based analytic network process: A case study of Perlis, Malaysia. Water, 11(3), 1-28. https://doi.org/10.3390/w11030615.
Das, S. 2018. Geographic information system and AHP-based flood hazard zonation of Vaitarna basin, Maharashtra, India. Arabian Journal of Geosciences, 11(19), 1-13. https://doi.org/10.1007/s12517-018-3933-4.
Das, S., 2020. Flood susceptibility mapping of the Western Ghat coastal belt using multi-source geospatial data and analytical hierarchy process (AHP). Remote Sensing Applications: Society and Environment, 20, 100379. https://doi.org/10.1016/j.rsase.2020.100379.
Ekmekcioğlu, O., Koc, K., & Ozger, M., 2021. District based flood risk assessment in Istanbul using fuzzy analytical hierarchy process. Stochastic Environmental Research and Risk Assessment, 35(3), 617-637. https://doi.org/10.1007/s00477-020-01924-8.
Fernandez, D., and Lutz, M. A. 2010. Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis. Engineering Geology, 111(1-4), 90-98. https://doi.org/10.1016/j.enggeo.2009.12.006.
Fernandez, P., Mourato, S., and Moreira, M., 2016. Social vulnerability assessment of flood risk using GIS-based multicriteria decision analysis. A case study of Vila Nova de Gaia (Portugal). Geomatics, Natural Hazards and Risk, 7(4), 1367-1389. https://doi.org/10.1080/19475705.2015.1052021.
Guo, E., Zhang, J., Ren, X., Zhang, Q., and Sun, Z., 2014. Integrated risk assessment of flood disaster based on improved set pair analysis and the variable fuzzy set theory in central Liaoning Province, China. Natural hazards, 74(2), 947-965. https://doi.org/10.1007/s11069-014-1238-9.
Handini, D. R., Hidayah, E., and Halik, G., 2021. Flash Flood Susceptibility Mapping at Andungbiru Watershed, East Java Using AHP-Information Weighted Method. Geosfera Indonesia, 6(2), 127-142. https://doi.org/10.19184/geosi.v6i2.24173.
Ibrahim-Bathis, K., and Ahmed, S., 2016. Geospatial technology for delineating groundwater potential zones in Doddahalla watershed of Chitradurga district, India. The Egyptian Journal of Remote Sensing and Space Science, 19(2), 223-234. https://doi.org/ 10.1016/j.ejrs. 2016.06.002.
Jia, J., Wang, X., Hersi, N. A., Zhao, W., and Liu, Y., 2019. Flood-risk zoning based on analytic hierarchy process and fuzzy variable set theory. Natural Hazards Review, 20(3), 04019006. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000329.
Kulimushi, L. C., Choudhari, P., Maniragaba, A., Elbeltagi, A., Mugabowindekwe, M., Rwanyiziri, G., and Singh, S. K. (2021). Erosion risk assessment through prioritization of sub-watersheds in Nyabarongo river catchment, Rwanda. Environmental Challenges, 5, 100260. https://doi.org/10.1016/j.envc.2021.100260.
Malik, S., Pal, S. C., Chowdhuri, I., Chakrabortty, R., Roy, P., and Das, B., 2020. Prediction of highly flood prone areas by GIS based heuristic and statistical model in a monsoon dominated region of Bengal Basin. Remote Sensing Applications: Society and Environment, 19, 100343. https://doi.org/10.1016/j.rsase.2020.100343.
Msabi, M. M., and Makonyo, M., 2021. Flood susceptibility mapping using GIS and multi-criteria decision analysis: a case of Dodoma region, central Tanzania. Remote Sensing Applications: Society and Environment, 21, 100445.
Nampak, H., Pradhan, B., & Abd Manap, M., 2014. Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. Journal of Hydrology, 513, 283-300. https://doi.org/10.1016/j.jhydrol.2014.02.053.
Patrikaki, O., Kazakis, N., Kougias, I., Patsialis, T., Theodossiou, N., and Voudouris, K., 2018. Assessing flood hazard at river basin scale with an index-based approach: The case of Mouriki, Greece. Geosciences, 8(2), 1-13. https://doi.org/10.3390/geosciences8020050.
Rimba, A. B., Setiawati, M. D., Sambah, A. B., and Miura, F., 2017. Physical flood vulnerability mapping applying geospatial techniques in Okazaki City, Aichi Prefecture, Japan. Urban Science, 1(1), 7. https://doi.org/10.3390/urbansci1010007.
Saaty, T. L., 1977. A scaling method for priorities in hierarchical structures. Journal of mathematical psychology, 15(3), 234-281. https://doi.org/10.1016/0022-2496(77)90033-5.
Sinshaw, B. G., Belete, A. M., Tefera, A. K., Dessie, A. B., Bizuneh, B. B., Alem, H. T., and Atinkut, H. B., 2021. Prioritization of potential soil erosion susceptibility region Using fuzzy Logic and Analytical Hierarchy process, Upper Blue Nile Basin, Ethiopia. Water-Energy Nexus. 10-24. https://doi.org/10.1016/j.wen.2021.01.001.
Souissi, D., Zouhri, L., Hammami, S., Msaddek, M. H., Zghibi, A., and Dlala, M., 2020. GIS-based MCDM–AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia. Geocarto International, 35(9), 991-1017.
Swain, K. C., Singha, C., and Nayak, L., 2020. Flood susceptibility mapping through the GIS-AHP technique using the cloud. ISPRS International Journal of Geo-Information, 9(12), 1-23. https://doi.org/10.3390/ijgi9120720.
Tella, A., and Balogun, A.-L., 2020. Ensemble fuzzy MCDM for spatial assessment of flood susceptibility in Ibadan, Nigeria. Natural hazards, 104(3), 2277-2306. https://doi.org/10.1007/ s11069-020-04272-6.
Tenzin, J., and Bhaskar, A. S., 2020. Flash Flood Hazard Zone Mapping Using GIS: Sarpang. International Journal of New Innovations in Engineering and Technology, 13. 2319-6319. http://www.ijniet.org/wp-content/uploads/2020/03/2.pdf.
Wang, G., Liu, Y., Hu, Z., Lyu, Y., Zhang, G., Liu, J., and Zheng, H., 2020. Flood risk assessment based on fuzzy synthetic evaluation method in the Beijing-Tianjin-Hebei metropolitan area, China. Sustainability, 12(4), 1-30. https://doi.org/10.3390/su12041451.
Wang, G., Liu, Y., Hu, Z., Zhang, G., Liu, J., Lyu, Y., and Liu, L., 2021. Flood Risk Assessment of Subway Systems in Metropolitan Areas under Land Subsidence Scenario: A Case Study of Beijing. Remote Sensing, 13(4), 1-33. https://doi.org/10.3390/rs13040637.
Yodying, A., Kamonchat, S., Sasithon, C., Polpreecha, C., Nattapon, M., Charatdao, K., and Sarintip, T., 2019. Flood hazard assessment using fuzzy analytic hierarchy process: A case study of Bang Rakam model in Thailand. Paper presented at the Proceedings of the 40th Asian conference on remote sensing, (ACRS 2019) October, 14-18. http://acrs2019.sigongji.com/ wp/pdf/TuD2-4.pdf.
CAPTCHA Image