ارزیابی حساسیت زمین‌لغزش و تعیین عوامل مؤثر در وقوع آن با استفاده از الگوریتم جنگل تصادفی (مطالعه موردی: حوضه آبخیز گلندرود)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری آب‌وهواشناسی، گروه جغرافیا، واحد نور دانشگاه آزاد اسلامی، نور، ایران

2 دانشیار گروه جغرافیا، واحد نور دانشگاه آزاد اسلامی، نور، ایران

3 هیأت علمی گروه میراث طبیعی، پژوهشگاه میراث فرهنگی و گردشگری، تهران، ایران

10.22067/geoeh.2025.89542.1514

چکیده

پژوهشگران بسیاری سعی نموده‌اند که مدل‌هایی برای ارزیابی حساسیت خطر زمین‌لغزش ارائه داده و به‌عبارت دیگر، به نقشه پهنه‌بندی لغزش‌ها برسند که بیش‌تر بر اساس روش استقرایی و مدل‌سازی‌های کمی و آماری بوده است. به این‌صورت که عوامل مختلف مؤثر در وقوع زمین‌لغزش را بررسی نموده و سپس چگونگی تأثیر آن‌ها را در پراکندگی لغزش‌ها تحلیل کرده‌اند. حوضه آبخیز گلندرود با توجه به ویژگی‌های زمین‌شناسی، تکتونیکی، شرایط اقلیمی، هیدرولوژیکی، توپوگرافی و پوشش گیاهی فقیر، دارای پتانسیل لغزشی بوده و دخالت غیراصولی انسان در آن باعث وقوع و تشدید حرکات توده‌ای می‌شود. در پژوهش حاضر با رویکردی توصیفی- تحلیلی و پیمایشی، به‌منظور تهیه نقشه حساسیت به ناپایداری دامنه‌ای و لغزش­های حوضه مطالعاتی از 11 فاکتور مؤثر در ناپایداری دامنه­ای و الگوریتم جنگل تصادفی استفاده شده است. این فاکتور­ها عبارت است از: شیب، جهت دامنه، ارتفاع، فاصله از جاده، فاصله از گسل، فاصله از آبراهه، مجموع بارندگی سالانه، میانگین دمای سالانه، کاربری زمین، زمین‌شناسی و انحناء دامنه‌ها. تعداد 352 نقطه لغزشی با استفاده از تصاویر ماهواره­ای و بازدیدهای میدانی مشخص شدند که از این تعداد، 70 درصد برای آموزش مدل و 30 درصد باقیمانده آن برای اعتبارسنجی مورد استفاده قرار گرفت. در ادامه، از کدنویسی الگوریتم جنگل تصادفی در محیط MATLAB R2020a برای شناسایی پهنه‌های مستعد به حرکات لغزشی استفاده شد. با توجه به نقشه خطرپذیری زمین‌لغزش در حوضه آبخیز گلندرود، بیش از 30 درصد منطقه در کلاس خطر بسیار زیاد، 19 درصد در کلاس خطر زیاد، 13 درصد در کلاس خطر متوسط، 19 درصد در کلاس خطر کم و 16 درصد از حوضه مطالعاتی نیز در کلاس خطر زمین‌لغزش خیلی کم قرار دارد. اولویت‌بندی متغیرهای مؤثر بیان‌گر آن است که بیش‌ترین وزن با رتبه معیار ۹۸/۰ مربوط به ارتفاع می‌باشد. تحلیل مفهوم کاتنا که بیان‌گر ارتباط میان الگو و چشم‌انداز خاک بر روی شیب دامنه با توپوگرافی است و منجر به تغییرپذیری خصوصیات خاک و به‌دنبال آن تغییر در پوشش گیاهی می‌شود، می‌تواند توجیه ارتباط یا اثرگذاری عامل ارتفاع بر حرکات لغزشی منطقه مطالعاتی باشد. مطالعه دقیق موضوع دلایل وقوع حرکت توده‌ای در منطقه گلندرود و راه‌های پیش‌گیری از خسارات ناشی از آن توسط متخصصین ذی‌ربط، مهم‌ترین اقدام برای کاهش خسارت‌های ناشی از آن است.

کلیدواژه‌ها

موضوعات


Abedini, M., & Mohammadzadeh Shisha Garan, M. (2022). Landslide assessment using radar images and radar interferometry Case area: Nirchai Basin. Journal of Environmental Science Studies, 7(3), 5161-5171. [In Persian] https://doi.org/:10.22034/jess.2022.335908.1758.html
Akbarimehr, M., Motagh, M., & Haghshenas-Haghighi, M. (2013). Slope stability assessment of the Sarcheshmeh Landslide, Northeast Iran, Investigated using InSAR and GPS observations. Remote Sensing, 5(8), 3681-3700. https://doi.org/10.3390/rs5083681
Aleotti, P., & Chowdhury, R. (1999). Landslide hazard assessment: summary review and new perspectives. Bulletin of Engineering Geology and the Environment, 58(1), 21-44. https://doi.org/10.1007/s100640050066
Alijani, B. (2003). The Climate of Iran. Payam Noor University Press, Tehran. [In Persian]
Amiri, M., Pourghasemi, H. R., Ghanbariana, G. A., & Afzali, S. F. (2019). Assessment of the importance of gully erosion effective factors using Boruta algorithm and its spatial modeling and mapping using three machine learning algorithms. Geoderma, 340, 55-69. https://doi.org/10.1016/j.geoderma.2018.12.042
Arabameri, A., Pradhan, B., Pourghasemi, H. R., Rezaei, K., & Kerle, N. (2018). Spatial modelling of gully erosion using GIS and R programing: A comparison among three data mining algorithms. Applied Sciences8(8), 1369. https://doi.org/10.3390/app8081369
Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40, 2375-2383. https://doi.org/10.3390/app8081369
Carlà, T., Intrieri, E., Di Traglia, F., & Casagli, N. (2016). A statistical-based approach for determining the intensity of unrest phases at Stromboli volcano (Southern Italy) using one-step-ahead forecasts of displacement time series. Natural Hazards, 84(1), 669-683. https://doi.org/10.1007/s11069-016-2451-5
Carlà, T., Intrieri, E., Farina, P., & Casagli, N. (2017). A new approach to assess the stability of rock slopes and identify impending failure conditions. In Workshop on World Landslide Forum, Springer, Cham, 733-739. http://dx.doi.org/10.1007/978-3-319-53498-5_84
Chen, W., Zhang, S., Li, R., & Shahabi, H. (2018). Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling. Science of the Total Environment, 644, 1006-1018. https://doi.org/10.1016/j.scitotenv.2018.06.389
Davoudi Moghaddam, D., Pourghasemi, H. R., & Rahmati, O. (2019). Assessment of the contribution of geo-environmental factors to flood inundation in a semi-arid region of SW Iran: Comparison of different advanced modeling approaches. Natural hazards GIS-based spatial modeling using data mining techniques. In HR. Pourghasemi, and M. Rossi (Eds.), Natural hazards GIS-based spatial modeling using data mining techniques. https://doi.org/10.1007/978-3-319-73383-8_3
Derafshi, K., Motevalli, S., Hosseinzadeh, M., & Esmaeili, R. (2013). Zoning the landslide hazard in the Taleghan watershed using frequency ratio and multivariate regression. Paper presented at the Proceedings of the Second National Conference of the Iranian Geomorphology Association (Geomorphology and Environmental Change Monitoring), Faculty of Geography, University of Tehran, 12-17. [In Persian]
Di Martire, D., Tessitore, S., Brancato, D., Ciminelli, M. G., Costabile, S., Costantini, M., ... & Calcaterra, D. (2016). Landslide detection integrated system (LaDIS) based on in-situ and satellite SAR interferometry measurements. Catena137, 406-421. https://doi.org/10.1016/j.catena.2015.10.002
Ebrahimkhani, R., Afzali, M., & Shokoohi, A. (2011). Prediction and analysis of factors in road traffic accidents using the random forest algorithm. Danesh-e Entezami-e Zanjan, 1(1), 111-127. [In Persian]
Fruneau, B., Achace, J., & Delacourt, C. (1996). Observation and modeling of the Saint- Etienne-de Tine'e landslide using SAR interferometry. Tectonophysics, 265(3-4), 181-190. https://doi.org/10.1016/S0040-1951(96)00047-9
Garosi, Y., Sheklabadi, M., Besalatpour, A. A., Pourghasemi, H. R., Conoscenti, C., & Van Oost, K. (2018). Comparison of the different resolution and source of controlling factors for gully erosion susceptibility mapping. Geoderma, 330, 65-78. https://doi.org/10.1016/j.geoderma.2018.05.027
Hilley, G. E., Bürgmann, R., Ferretti, A., Novali, F., & Rocca, F. (2004). Dynamics of slow-moving landslides from permanent scatterer analysis. Science, 304(5679), 1952- 1955. https://doi.org/10.1126/science.1098821
Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters, 31(23), 1-5. https://doi.org/10.1029/2004GL021737
Intrieri, E., Gigli, G., Mugnai, F., Fanti, R., & Casagli, N. (2012). Design and implementation of a landslide early warning system. Engineering Geology, 147, 124-136. https://doi.org/10.1016/j.enggeo.2012.07.017
Jaboyedoff, M., Michoud, C., Derron, M. H., Voumard, J., Leibundgut, G., Sudmeier-Rieux, K., ... & Leroi, E. (2018). Human-induced landslides: toward the analysis of anthropogenic changes of the slope environment. In Landslides and engineered slopes. Experience, theory and practice. CRC Press, 217-232. http://dx.doi.org/10.1201/b21520-20
Karam, A., & Tourani, M. (2013). Zoning the land susceptibility to landslides using linear regression and hierarchical analysis process, case study: Haraz Axis from Rudehen to Rineh. Applied Research in Geographical Sciences, 13(28), 177-190. [In Persian] http://jgs.khu.ac.ir/article-1-691-fa.html
Karimi Sangchini, E., Awnagh, M., & Saedaldin, A. (2012). Comparing applicability of 4 quantitative and semi-quantitative models in landslide hazard zonation in Chehel-Chay watershed, Golestan province. Water and Soil Conservation, 19(1), 183-196. [In Persian] https://dorl.net/dor/20.1001.1.23222069.1391.19.1.11.2
Lauknes, T. R., Shanker, A. P., Dehls, J. F., Zebker, H. A., Henderson, I. H. C., & Larsen, Y. (2010). Detailed rockslide mapping in northern Norway with small baseline and persistent scatterer interferometric SAR time series methods. Remote Sensing of Environment, 114(9), 2097-2109. https://doi.org/10.1016/j.rse.2010.04.015
Lieb, M., Glaser, B., & Huwe, B. (2012). Uncertainty in the spatial prediction of soil texture: comparison of regression tree and Random Forest models. Geoderma170, 70-79. https://doi.org/10.1016/j.geoderma.2011.10.010
Metternicht, G., Hurni, L., & Gogu, R. (2005). Remote sensing of landslides: An analysis of the potential contribution to geospatial system for hazard assessment in mountainous environments. Remote Sensing of Environment, 98(2-3), 284-303. https://doi.org/10.1016/j.rse.2005.08.004
Mora, O., Mallorqui, J. J., & Broquetas, A. (2003). Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE Transactions on Geoscience and Remote Sensing, 41(10), 2243-2253. https://doi.org/10.1109/TGRS.2003.814657
Motevalli, S., Hosseinzadeh, M., Esmaeili, R., & Derafshi, K. (2015). Evaluation of the accuracy of Multivariate Regression (MR), Logistic Regression (RL), Analytic Hierarchy Process (AHP), and Fuzzy Logic (FL) methods in landslide hazard zoning in the Taleghan watershed. Quantitative Geomorphology Research, 14(1), 1-20. [In Persian] https://dor.isc.ac/dor/20.1001.1.22519424.1394.4.1.1.4
Naghibi, A., & Pourghasemi, H. R. (2015). A comparative assessment of three machine learning models and their performance comparison by bivariate and multivariate. Water Resource Management, 29, 5217-5236. http://dx.doi.org/10.1007/s11269-015-1114-8
Nicodemus, K. K. (2011). Letter to the Editor: On the stability and ranking of predictors from random forest variable importance measures. Briefings in Bioinformatics, 12, 369-373. https://doi.org/10.1093%2Fbib%2Fbbr016
Peters, J., Verhoest, N., Samson, R., Boeckx, P., & De Baets, B. (2008). Wetland vegetation distribution modelling for the identification of constraining environmental variables. Landscape Ecology, 23, 1049- 1065. https://doi.org/10.1007/s10980-008-9261-4
Pirasteh, S., & Li, J. (2017). Landslides investigations from geoinformatics perspective: quality, challenges, and recommendations. Geomatics, Natural Hazards and Risk, 8(2), 1-18. https://doi.org/10.1080/19475705.2016.1238850
Raefatnia, N., Kaviyanpour, M. K., & Ahmadi, T. (2011). Investigating the causes of landslide phenomena in the Glandrood forest (Case study, Series 3, Watershed 48). Natural Resources Science and Technology, 6(1), 53-63. [In Persian] https://sanad.iau.ir/journal/jstnr/Article/1077144
Rahmati, O., Pourghasemi, H. R., & Melesse, A. M. (2016). Application of GIS-based data-driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region, Iran. Catena, 137, 360-372. https://doi.org/10.1016/j.catena.2015.10.010
Rott, H., Scheuchl, B., Siegel, A., & Grasemann, B. (1999). Monitoring very slow slope movements by means of SAR interferometry: a case study from a mass waste above a reservoir in the Ötztal Alps, Austria. Geophysical Research Letters, 26(11), 1629-1632. https://doi.org/10.1029/1999GL900262
Sabeti, H., Motagh, M., Sharifi, M. A., Akbari, B., Akbarimehr, M., & Fard, D. (2019). Determination of the displacement rate of the Masoumeh landslide for management of landslide risk by Radar Interferometry. Iranian Journal of Watershed Management Sciences, 13(44), 103-113. [In Persian] http://jwmsei.ir/article-1-745-fa.html
Strozzi, T., Farina, P., Corsini, A., Ambrosi, C., Thüring, M., Zilger, J., ... & Werner, C. (2005). Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry. Landslides2, 193-201. https://doi.org/10.1007/s10346-005-0003-2
Talebi, A. (2011). Investigating the effect of subsurface flows on the occurrence of surface landslides. Paper presented at the Proceedings of the 7th National Conference on Watershed Science and Engineering of Iran. [In Persian]
Talebi, A., Goudarzi, S., & Pourghasemi, H. R. (2018). Investigation of the possibility of landslide hazard mapping using the Random Forest algorithm (Case study: Sardarabad Watershed, Lorestan Province). Natural Environmental Hazards, 7(16), 45-64. [In Persian] https://doi.org/10.22111/jneh.2017.3213
Teimouri, M., & Asadi Nalivan, O. (2020). Susceptibility zoning and prioritization of the factors affecting landslide using MaxEnt, geographic information system and remote sensing models (Case study: Lorestan Province). Hydrogeomorphology, 6(21), 155-179. [In Persian] https://dorl.net/dor/20.1001.1.23833254.1398.6.21.8.3
Youssef, A. M., Pourghasemi, H. R., Pourtaghi, Z. S., & Al-Katheeri, M. M. (2015). Landslide susceptibility mapping using the random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin. Asir Region, Saudi Arabia, Landslides, 1-14. https://doi.org/10.1007/s10346-015-0614-1
Zeng, T., Guo, Z., Wang, L., Jin, B., Wu, F., & Guo, R. (2023). Tempo-Spatial landslide susceptibility assessment from the perspective of human engineering activity. Remote Sensing, 15(16), 4111(1-28). https://doi.org/10.3390/rs15164111
Zhao, C., & Lu, Z. (2018). Remote sensing of landslides - A review. Remote Sensing, 10(2), 279 (1-6). https://doi.org/10.3390/rs10020279
CAPTCHA Image