پایش فرونشست در حریم خطوط ریلی با الگوریتم LiCSBAS و روش تداخل سنجی راداری (مطالعه موردی: راه‌آهن مشهد-سرخس)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته رشته علوم و مهندسی محیط زیست، دانشگاه فردوسی مشهد، مشهد، ایران

2 استادیار سیستم‌های اطلاعات جغرافیایی، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران

10.22067/geoeh.2024.87783.1480

چکیده

در سال‌های اخیر پدیده فرونشست و وقوع آن در دشت‌ها، مناطق شهری و زیرساخت‌های حمل و نقل کشور ایران به نگرانی عمده‌ای تبدیل شده است. از این‌رو مطالعه حاضر، به بررسی اثرات این پدیده بر راه‌آهن مشهد-سرخس پرداخته است؛ چرا که این خط‌آهن با قرارگیری در منتهی‌الیه شرقی شبکه ریلی ایران و اتصال آن به کشور‌های حوزه آسیای میانه، نقش مهمی در واردات و صادرات ایران ایفا می‌کند. در راستای بررسی میزان فرونشست این مسیر، با پردازش 151 تصویر راداری سنجنده سنتینل-1 به کمک الگوریتم نوین NSBAS و پیش‌پردازش داده‌ها در سامانه LiCSAR نرخ تجمعی فرونست در بازه زمانی 2017 تا 2023 محاسبه شد و به جهت تقلیل اثرات جوی از سامانه GACOS استفاده گردید. در گام بعد برای بررسی نقش پوشش اراضی بر فرونشست، به کمک سامانه متن‌باز Goolge earth engine نقشه پوشش اراضی محدوده مطالعاتی با چهار طبقه کاربری تولید شد. سپس پروفیل فرونشست در راستای ریل تولید و برای ارزیابی ارتباط فعالیت‌های کشاورزی و فرونشست، پروفیل فرونشست با طبقات کاربری اراضی تلفیق شد. نتایج پردازش InSAR نشان داد که سه پهنه فرونشستی در مسیر ریل وجود دارد؛ به طوری که برخی نواحی تا بیش از 200 میلیمتر فرونشست داشته‌اند و محل وقوع فرونشست نیز عمدتاً در مناطق دارای فعالیت کشاورزی متمرکز قرار گرفته است. این مطالعه کیلومتر 0 تا 60 این مسیر را که دارای پل‌های روگذر و زیرگذر متعدد است، به عنوان پرمخاطره‌‌ترین بخش مسیر از نظر شدت فرونشست شناسایی کرد.

کلیدواژه‌ها

موضوعات


Behniafar, A., Ghanbarzadeh, H., & Eshraghi, A. (2010). Investigation of factors affecting subsidence in the Mashhad plain and its geomorphic consequences. Zagros Perspective Geographical Quarterly, 2(5), 131–146. [In Persian]
Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11), 2375–2383. https://doi.org/10.1109/TGRS.2002.803792
Biggs, J., Wright, T., Lu, Z., & Parsons, B. (2007). Multi-interferogram method for measuring interseismic deformation: Denali Fault, Alaska. Geophysical Journal International, 170(3), 1165–1179. http://dx.doi.org/10.1111/j.1365-246X.2007.03415.x
Chang, L., Sakpal, N. P., Elberink, S. O., & Wang, H. (2020). Railway infrastructure classification and instability identification using Sentinel-1 SAR and laser scanning data. Sensors20(24), 7108. https://doi.org/10.3390/s20247108
Chen, B., Gong, H., Chen, Y., Lei, K., Zhou, C., Si, Y., ... & Gao, M. (2021). Investigating land subsidence and its causes along Beijing high-speed railway using multi-platform InSAR and a maximum entropy model. International Journal of Applied Earth Observation and Geoinformation, 96, 102284. https://doi.org/10.1016/j.jag.2020.102284
Doin, M. P., Lodge, F., Guillaso, S., Jolivet, R., Lasserre, C., Ducret, G., ... & Pinel, V. (2011). Presentation of the small baselin nsbas processing chain on a case example: The etan deformation monitoring from 2003 to 2010 using envisat data. In Fringe Symposium. https://ens.hal.science/hal-02185213
Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8–20. http://dx.doi.org/10.1109/36.898661
Ferretti, A., Savio, G., Barzaghi, R., Borghi, A., Musazzi, S., Novali, F., ... & Rocca, F. (2007). Submillimeter accuracy of InSAR time series: Experimental validation. IEEE Transactions on Geoscience and Remote Sensing, 45(5), 1142–1153. http://dx.doi.org/10.1109/TGRS.2007.894440
Foroughnia, F., Nemati, S., Maghsoudi, Y., & Perissin, D. (2019). An iterative PS-InSAR method for the analysis of large spatio-temporal baseline data stacks for land subsidence estimation. International Journal of Applied Earth Observation and Geoinformation, 74, 248–258. https://doi.org/10.1016/j.jag.2018.09.018
Gambolati, G., & Teatini, P. (2015). Geomechanics of subsurface water withdrawal and injection. Water Resources Research51(6), 3922-3955. https://doi.org/10.1002/2014WR016841
Gao, F., Zhao, T., Zhu, X., Zheng, L., Wang, W., & Zheng, X. (2023). Land subsidence characteristics and numerical analysis of the impact on major infrastructure in Ningbo, China. Sustainability, 15(1), 543. https://doi.org/10.3390/su15010543
Hooper, A. (2004). StaMPS (Stanford Method for PS) Manual. http://sismologia.ist.utl.pt/files/StaMPS_manual.pdf
Hooper, A. (2008). A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophysical Research Letters, 35(16), L16302. http://dx.doi.org/10.1029/2008GL034654
Hooper, A., Segall, P., & Zebker, H. (2007). Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcan Alcedo, Galapagos. Journal of Geophysical Research: Solid Earth, 112(B7), B07407. http://dx.doi.org/10.1029/2006JB004763
Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J. C., Mathis, M., & Brumby, S. P. (2021). Global land use/land cover with Sentinel 2 and deep learning. In 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS (pp. 4704–4707). https://doi.org/10.1109/IGARSS47720.2021.9553499
Khorrami, M., Abrishami, S., & Maghsoudi, Y. (2020). Mashhad Subsidence Monitoring by Interferometric Synthetic Aperture Radar Technique. Amirkabir Journal of Civil Engineering51(6), 1187-1204. [In Persian] https://doi.org/10.22060/ceej.2018.14300.5617
Lazecký, M., Spaans, K., González, P. J., Maghsoudi, Y., Morishita, Y., Albino, F., ... & Wright, T. J. (2020). LiCSAR: An automatic InSAR tool for measuring and monitoring tectonic and volcanic activity. Remote Sensing, 12(15), 2430. https://doi.org/10.3390/rs12152430
Luo, Q., Zhou, G., & Perissin, D. (2017). Monitoring of subsidence along Jingjin inter-city railway with high-resolution TerraSAR-X MT-InSAR analysis. Remote Sensing9(7), 717. https://doi.org/10.3390/rs9070717
Meng, Z., Shu, C., Wu, Q., & Yang, Y. (2021). Monitoring surface deformation of high-speed railway using time-series InSAR method in northeast China. IOP Conference Series: Earth and Environmental Science, 660(1), 012011. http://dx.doi.org/10.1088/1755-1315/660/1/012011
Minh, D. H. T., Van Trung, L., & Toan, T. L. (2015). Mapping ground subsidence phenomena in Ho Chi Minh City through the radar interferometry technique using ALOS PALSAR data. Remote Sensing, 7(7), 8543–8562. https://doi.org/10.3390/rs70708543
Ministry of Energy. (2010). Updating the integration of water resources studies, Qareh Qom watershed, Volume 2: Reviews and general specifications. Office of Basic Water Resources Studies. [In Persian]
Ministry of Energy. (2019). Prohibited plains. Office of Protection and Utilization of Water Resources and Subscriber Affairs. [In Persian]
Morishita, Y., Lazecký, M., Wright, T. J., Weiss, J. R., Elliott, J. R., & Hooper, A. (2020). LiCSBAS: An open-source InSAR time series analysis package integrated with the LiCSAR automated Sentinel-1 InSAR processor. Remote Sensing, 12(3), 424. https://doi.org/10.3390/rs12030424
Parliament Research Center. (1996). Opening of the Mashhad-Sarakhs-Tejen railway line with a look at the situation of Sarakhs. [In Persian]
Perissin, D., Wang, Z., & Wang, T. (2011). The SARPROZ InSAR tool for urban subsidence/manmade structure stability monitoring in China. In 34th International Symposium on Remote Sensing. Sydney, Australia.
Pietrzak, O., & Pietrzak, K. (2019). The role of railway in handling transport services of cities and agglomerations. Transportation Research Procedia39, 405-416. https://doi.org/10.1016/j.trpro.2019.06.043
Polcari, M., Moro, M., Romaniello, V., & Stramondo, S. (2019). Anthropogenic subsidence along railway and road infrastructures in Northern Italy highlighted by CosmoSkyMed satellite data. Journal of Applied Remote Sensing, 13(2), 024515. http://dx.doi.org/10.1117/1.JRS.13.024515
Rosen, P. A., Gurrola, E., Sacco, G. F., & Zebker, H. (2012). The InSAR scientific computing environment. In Proceedings of the EUSAR 2012. Nuremberg, Germany.
Sahraoui, O. H., Hassaine, B., Serief, C., & Hasni, K. (2006). Radar interferometry with Sarscape software. Photogrammetry and Remote Sensing, 1-10.
Salehi Moteahd, F., Hafezi Moghaddas, N., Lashkaripour, G., & Dehghani, M. (2019). Land Subsidence and its Consequences in Mashhad City by Integrating Radar Interferometry and Field Measurements. Journal of Engineering Geology13(3), 435-462. [In Persian] http://dx.doi.org/10.18869/acadpub.jeg.13.3.435
Sandwell, D., Mellors, R., Tong, X., Wei, M., & Wessel, P. (2011). Open radar interferometry software for mapping surface deformation. EOS Transactions, American Geophysical Union, 92(28), 234. https://doi.org/10.1029/2011EO280002
Shami, S., Azar, M. K., Nilfouroushan, F., Salimi, M., & Reshadi, M. A. M. (2022). Assessments of ground subsidence along the railway in the Kashan plain, Iran, using Sentinel-1 data and NSBAS algorithm. International Journal of Applied Earth Observation and Geoinformation, 112, 102898. https://doi.org/10.1016/j.jag.2022.102898
Sharifikia, M. (2010). Investigation of the consequences of the subsidence phenomenon in residential lands and plains of Iran. Journal of the Iranian Geological Engineering Association, 3(3–4), 43–58. [In Persian] https://www.jiraeg.ir/article_68238.html
Veci, L. (2015). Interferometry tutorial. Array Systems. Available online: http://sentinel1.s3. amazonaws .
Werner, C., Wegmüller, U., Strozzi, T., & Wiesmann, A. (2000). Gamma SAR and interferometric processing software. In Proceedings of the ERS-ENVISAT Symposium. Gothenburg, Sweden. https://api.semanticscholar.org/CorpusID:28598270
Yang, Z. (2015). Monitoring and predicting railway subsidence using InSAR and time series prediction techniques (Doctoral dissertation). https://etheses.bham.ac.uk/id/eprint/6377/
Yu, C., Li, Z., Penna, N., & Crippa, P. (2018). Generic atmospheric correction model for interferometric synthetic aperture radar observations. Journal of Geophysical Research: Solid Earth, 123(10), 9202–9222. https://doi.org/10.1029/2017JB015305
Zhang, Y., Fattahi, H., & Amelung, F. (2019). Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction. Computers & Geosciences, 133, 104331. https://doi.org/10.1016/j.cageo.2019.104331
Zinno, I., Elefante, S., Luca, C. D., Manunta, M., Lanari, R., & Casu, F. (2015). New advances in intensive DInSAR processing through cloud computing environments. In Proceedings of the IGARSS 2015 (pp. 5264–5267). Milan, Italy. http://dx.doi.org/10.1109/IGARSS.2015.7327022
CAPTCHA Image