تاثیر کاربری اراضی بر قابلیت جذب فلزات سنگین و آلودگی محیطی خاک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مدیریت مناطق خشک و بیابانی، دانشکده منابع طبیعی و محیط زیست دانشگاه فردوسی مشهد، مشهد، ایران

2 دانشیار گروه مدیریت مناطق خشک و بیابانی، دانشکده منابع طبیعی و محیط زیست دانشگاه فردوسی مشهد، مشهد، ایران

3 استاد گروه مهندسی علوم خاک، پردیس کشاورزی و منابع طبیعی کرج، دانشگاه تهران، تهران، ایران

10.22067/geoeh.2024.86609.1463

چکیده

آلودگی خاک ناشی از فلزات سنگین، یکی از مخاطرات مهم محیطی است که بر ویژگی اکوسیستم‌ها تاثیر گذاشته و تنوع زیستی که شرط اصلی پویایی، تعادل و پایداری اکوسیستم می‌باشد، را با مشکلات جدی روبرو می‌سازد. بنابراین، شناخت عوامل مهم در قابلیت جذب فلزات سنگین می‌تواند در مدل­سازی و فهم تاثیرات این فلزات در خاک حائز اهمیت باشد. در پژوهش حاضر به منظور بررسی تاثیر نوع کاربری زمین بر ویژگی‌های خاک و همچنین قابلیت جذب فلزات سنگین روی، مس، منگنز و آهن، در سال 1390، تعداد 116 نمونه خاک از سه کاربری جنگل پهن‌برگ، سوزنی‌برگ و مرتع در پارک چیتگر در غرب تهران، مورد تجزیه و تحلیل قرار گرفت. در این پژوهش فرم قابل جذب فلزات مس، روی، آهن و منگنز و همچنین ویژگیهای درصد کربن آلی، بافت خاک، PH و درصد کربنات کلسیم نیز اندازه­گیری شد. نتایج تجزیه واریانس نشان داد که نوع کاربری بر مقدار منگنز، روی و مس قابل جذب اثر معنی‌داری داشت به‌طوری که مقدار روی(mg/kg44/4) در کاربری پهن‌برگ، 5/2 برابر نسبت به مرتع بیشتر بود. در حالی که مقدار آهن قابل جذب در بین سه نوع کاربری اختلاف معنی‌دار نشان نداد. همچنین، نوع کاربری بر خصوصیات خاک از جمله مقدار کربن آلی نیز تاثیرگذار بود. از طرف دیگر، نتایج آنالیز همبستگی بین مقادیر کربن آلی خاک و برخی از فلزات سنگین همبستگی بالایی به‌ویژه با مقدار روی قابل جذب (76/0) نشان داد. بنابراین، تغییر کاربری و کاشت جنگل از طریق تاثیر بر ویژگیهای خاک به‌ویژه تاثیر بر مقدار ماده آلی بر زیست‌فراهمی فلزات موثر بود.

کلیدواژه‌ها

موضوعات


Aluko, T., Njoku, K., Adesuyi, A., & Akinola, M. (2018). Health risk assessment of heavy metals in soil from the iron mines of Itakpe and Agbaja, Kogi State, Nigeria. Pollution4(3), 527-538. https://doi.org/10.22059/poll.2018.243543.330
Amini, M., Khademi, H., Afyuni, M., & Abbaspour, K. C. (2005). Variability of available cadmium in relation to soil properties and landuse in an arid region in central Iran. Water, Air, and Soil Pollution162, 205-218. https://doi.org/10.1007/s11270-005-6273-4
Andersen, M. K., Refsgaard, A., Raulund-Rasmussen, K., Strobel, B. W., & Hansen, H. C. (2002). Content, distribution, and solubility of cadmium in arable and forest soils. Soil Science Society of America Journal66(6), 1829-1835. https://doi.org/10.2136/sssaj2002.1829
Asmare, T. K., Abayneh, B., Yigzaw, M., & Birhan, T. A. (2023). The effect of land use type on selected soil physicochemical properties in Shihatig watershed, Dabat district, Northwest Ethiopia. Heliyon9(5). https://doi.org/10.1016/j.heliyon.2023.e16038
Bradl, H. B. (2004). Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science277(1), 1-18. https://doi.org/10.1016/j.jcis.2004.04.005
Busse, M. D., Sanchez, F. G., Ratcliff, A. W., Butnor, J. R., Carter, E. A., & Powers, R. F. (2009). Soil carbon sequestration and changes in fungal and bacterial biomass following incorporation of forest residues. Soil Biology and Biochemistry41(2), 220-227. https://doi.org/10.1016/j.soilbio.2008.10.012
Cao, L., Li, W., Deng, H., Wang, W., Liang, Y., Wei, Z., ... & Tan, W. (2022). Effect of land use pattern on the bioavailability of heavy metals: A case study with a multi-surface model. Chemosphere307,135842. https://doi.org/10.1016/j.chemosphere.2022.135842
Chen, C. W., Kao, C. M., Chen, C. F., & Dong, C. D. (2007). Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor, Taiwan. Chemosphere66(8), 1431-1440. https://doi.org/10.1016/j.chemosphere.2006.09.030
Cocheci, R. M., Ianos, I., Sarbu, C. N., Sorensen, A., Saghin, I., & Secareanu, G. (2019). Assessing environmental fragility in a mining area for specific spatial planning purposes. Moravian Geographical Reports, 27(3), 169-82. https://doi.org/10.2478/mgr-2019-0013
El Fadili, H., Ali, M. B., Rahman, M. N., El Mahi, M., & Louki, S. (2024). Bioavailability and health risk of pollutants around a controlled landfill in Morocco: Synergistic effects of landfilling and intensive agriculture. Heliyon10(1). https://doi.org/10.1016/j.heliyon.2023.e23729
Fageria, N. K., & Baligar, V. C. (2008). Ameliorating soil acidity of tropical Oxisols by liming for sustainable crop production. Advances in Agronomy99, 345-399. https://doi.org/10.1016/S0065-2113(08)00407-0
He, J., Chen, B., Xu, W., Xiang, C., Kuang, W., & Zhao, X. (2023). Driving factors for soil C: N ratio in woody plant communities across northeastern Qinghai-Tibetan Plateau. Catena233, 107504. https://doi.org/10.1016/j.catena.2023.107504
Holm, P. E., Christensen, T. H., Lorenz, S. E., Hamon, R. E., Domingues, H. C., Sequeira, E. M., & McGrath, S. P. (1998). Measured soil water concentrations of cadmium and zinc in plant pots and estimated leaching outflows from contaminated soils. Water, Air, and Soil Pollution102, 105-115. https://doi.org/10.1023/A:1004964200904
Huang, S. W., & Jin, J. Y. (2008). Status of heavy metals in agricultural soils as affected by different patterns of land use. Environmental Monitoring and Assessment139, 317-327. https://doi.org/10.1007/s10661-007-9838-4
Hussain, B., Ashraf, M. N., Abbas, A., Li, J., & Farooq, M. (2021). Cadmium stress in paddy fields: effects of soil conditions and remediation strategies. Science of The Total Environment754, 142188. https://doi.org/10.1016/j.scitotenv.2020.142188
Kabata-Pendias, A. (2000). Trace elements in soils and plants. CRC press, Boca Raton.
Kamunda, C., Mathuthu, M., & Madhuku, M. (2016). Health risk assessment of heavy metals in soils from Witwatersrand Gold Mining Basin, South Africa. International Journal of Environmental Research and Public Health13(7), 663. https://doi.org/10.3390/ijerph13070663
Kashtabeh, R., Akbari, M., Heidari, A., & Najafpour, A. (2023). Impact of Iron Ore Mining on the Concentration of some Heavy Metals and Soil Pollution Zoning (Case Study: Sangan Iron Ore Mine, Khaf-Iran). Water and Soil, 37(1), 77-94. [In Persian]  https://doi.org/10.22067/jsw.2023.79471.1219
Klik, B., Gusiatin, Z. M., & Kulikowska, D. (2021). A holistic approach to remediation of soil contaminated with Cu, Pb and Zn with sewage sludge-derived washing agents and synthetic chelator. Journal of Cleaner Production311, 127664. https://doi.org/10.1016/j.jclepro.2021.127664
Kumpiene, J., Lagerkvist, A., & Maurice, C. (2008). Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments–a review. Waste Management28(1), 215-225. https://doi.org/10.1016/j.wasman.2006.12.012
Li, T., Liang, C., Han, X., & Yang, X. (2013). Mobilization of cadmium by dissolved organic matter in the rhizosphere of hyperaccumulator Sedum alfredii. Chemosphere91(7), 970-976. https://doi.org/10.1016/j.chemosphere.2013.01.100
Lindsay, W. L., & Norvell, W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil science society of America journal, 42(3), 421-428. https://doi.org/10.2136/sssaj1978.03615995004200030009x
Marchand, C., Allenbach, M., & Lallier-Vergès, E. (2011). Relationships between heavy metals distribution and organic matter cycling in mangrove sediments (Conception Bay, New Caledonia). Geoderma160(3-4),444-456. https://doi.org/10.1016/j.geoderma.2010.10.015
Masha, M., Belayneh, M., Bojago, E., Tadiwos, S., & Dessalegn, A. (2023). Impacts of land-use and topography on soil physicochemical properties in the Wamancho watershed, Southern Ethiopia. Journal of Agriculture and Food Research14, 100854. https://doi.org/10.1016/j.jafr.2023.100854
McBride, M., Sauve, S., & Hendershot, W. (1997). Solubility control of Cu, Zn, Cd and Pb in contaminated soils. European Journal of Soil Science48(2), 337-346. https://doi.org/10.1111/j.1365-2389.1997.tb00554.x
Mishra, S., Bharagava, R. N., More, N., Yadav, A., Zainith, S., Mani, S., & Chowdhary, P. (2019). Heavy metal contamination: an alarming threat to environment and human health. Environmental Biotechnology: For Sustainable Future, 103-125. https://doi.org/10.1007/978-981-10-7284-0_5
Molla, E., Getnet, K., & Mekonnen, M. (2022). Land use change and its effect on selected soil properties in the northwest highlands of Ethiopia. Heliyon8(8), 10157. https://doi.org/10.1016/j.heliyon.2022.e10157
Nasrian, A., Akbari, M., Faridhosseini, A., & Neamatollahi, E. (2022). Spatio-temporal monitoring of groundwater changes on desertification intensity in agricultural areas in Dargaz plain, Khorasan Razavi province. Desert Ecosystem Engineering7(21), 75-90. [In Persian] https://deej.kashanu.ac.ir/article_112660_en.html?
Ondrasek, G., & Rengel, Z. (2012). The role of soil organic matter in trace element bioavailability and toxicity. Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability, 403-423. https://doi.org/10.1007/978-1-4614-0634-1_22
Palansooriya, K. N., Shaheen, S. M., Chen, S. S., Tsang, D. C., Hashimoto, Y., Hou, D., ... & Ok, Y. S. (2020). Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environment International134, 105046. https://doi.org/10.1016/j.envint.2019.105046
Pansu, M. (2006). Handbook of soil analysis. Springer.
Peijnenburg, W. J. G. M., Baerselman, R., De Groot, A., Jager, T., Leenders, D., Posthuma, L., & Van Veen, R. (2000). Quantification of metal bioavailability for lettuce (Lactuca sativa L.) in field soils. Archives of Environmental Contamination and Toxicology39, 420-430. https://doi.org/10.1007/s002440010123
Pour Hashemi, M. (1997). Study of quality and quantity afforested species in Chitgar forest park. Thesis of  Msc in forestry field, Natural recourse faculty. university of Tehran.  [In Persian]
Qin, G., Niu, Z., Yu, J., Li, Z., Ma, J., & Xiang, P. (2021). Soil heavy metal pollution and food safety in China: Effects, sources and removing technology. Chemosphere267, 129205. https://doi.org/10.1016/j.chemosphere.2020.129205
Qishlaqi, A., Moore, F., & Forghani, G. (2009). Characterization of metal pollution in soils under two landuse patterns in the Angouran region, NW Iran; a study based on multivariate data analysis. Journal of Hazardous Materials172(1), 374-384. https://doi.org/10.1016/j.jhazmat.2009.07.024
Renella, G., Adamo, P., Bianco, M. R., Landi, L., Violante, P., & Nannipieri, P. (2004). Availability and speciation of cadmium added to a calcareous soil under various managements. European Journal of Soil Science55(1), 123-133. https://doi.org/10.1046/j.1365-2389.2003.00586.x
Sheikhi Alman Abad, Z., Pirkharrati, H., & Mojarrad, M. (2021). Health risk assessment of heavy metals in the soil of angouran mineral processing complex in iran. Pollution7(1), 241-256. https://doi.org/10.22059/poll.2020.311068.912
Shparyk, Y. S., & Parpan, V. I. (2004). Heavy metal pollution and forest health in the Ukrainian Carpathians. Environmental Pollution130(1), 55-63. https://doi.org/10.1016/j.envpol.2003.10.030
Singh, K. P., Mohan, D., Sinha, S., & Dalwani, R. (2004). Impact assessment of treated/untreated wastewater toxicants discharged by sewage treatment plants on health, agricultural, and environmental quality in the wastewater disposal area. Chemosphere55(2),227-255. https://doi.org/10.1016/j.chemosphere.2003.10.050
Tanhan, P., Kruatrachue, M., Pokethitiyook, P., & Chaiyarat, R. (2007). Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King &Robinson]. Chemosphere68(2),323-329. https://doi.org/10.1016/j.chemosphere.2006.12.064
Tao, Q., Hou, D., Yang, X., & Li, T. (2016). Oxalate secretion from the root apex of Sedum alfredii contributes to hyperaccumulation of Cd. Plant and Soil398, 139-152. https://doi.org/10.1007/s11104-015-2651-x
Tufa, M., Melese, A., & Tena, W. (2019). Effects of land use types on selected soil physical and chemical properties: The case of Kuyu District, Ethiopia. Eurasian Journal of Soil Science8(2), 94-109. https://doi.org/10.18393/ejss.510744
Udo, E. J., Bohn, H. L., & Tucker, T. C. (1970). Zinc adsorption by calcareous soils. Soil Science Society of America Journal34(3), 405-407. https://doi.org/10.2136/sssaj1970.03615995003400030018x
Wang, J. X., Xu, D. M., Fu, R. B., & Chen, J. P. (2021). Bioavailability assessment of heavy metals using various multi-element extractants in an indigenous zinc smelting contaminated site, southwestern China. International Journal of Environmental Research and Public Health18(16), 8560. https://doi.org/10.3390/ijerph18168560
Yang, S., Dong, Z., Zhu, B., Yan, X., Huang, J., Xie, X., ... & Ning, P. (2024). Feasibility and solidification mechanism study of self-sustaining smoldering remediation for copper and lead-contaminated soil. Environmental Research250, 118498. https://doi.org/10.1016/j.envres.2024.118498
Younas, N., Fatima, I., Ahmad, I. A., & Ayyaz, M. K. (2023). Alleviation of zinc deficiency in plants and humans through an effective technique; biofortification: A detailed review. ActaEcologica Sinica43(3), 419-425. https://doi.org/10.1016/j.chnaes.2022.07.008
Zhang, T., Wang, P., Wang, M., Liu, J., Gong, L., & Xia, S. (2023). Spatial distribution, source identification, and risk assessment of heavy metals in riparian soils of the Tibetan plateau. Environmental Research237, 116977. https://doi.org/10.1016/j.envres.2023.116977
Zhu, Q., Ji, J., Tang, X., Wang, C., & Sun, H. (2023). Bioavailability assessment of heavy metals and organic pollutants in water and soil using DGT: A review. Applied Sciences13(17), 9760. https://doi.org/10.3390/app13179760
Zinn, Y. L., de Faria, J. A., de Araujo, M. A., & Skorupa, A. L. A. (2020). Soil parent material is the main control on heavy metal concentrations in tropical highlands of Brazil. Catena185, 104319. https://doi.org/10.1016/j.catena.2019.104319
CAPTCHA Image