ارزیابی ارتباط بین شاخص کیفیت خاک و تغییرات کربن آلی تحت تأثیر کاربری‌های مختلف‌(مطالعه موردی: منطقه سهند استان آذربایجان شرقی)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 محقق پسادکتری گروه علوم و مهندسی خاک دانشگاه زنجان، زنجان، ایران

2 استاد گروه علوم و مهندسی خاک دانشگاه زنجان، زنجان، ایران

10.22067/geoeh.2023.81986.1354

چکیده

خاک‌های مرتعی به علّت دارا بودن مواد آلی زیاد همواره مورد توجه بوده است، در حالیکه تغییر کاربری آن‌ها تأثیر زیادی بر مقدار کربن آلی به­عنوان کلید کیفیت خاک می‌گذارد. در این تحقیق کمی کردن کیفیت خاک در مراتع سهند استان آذربایجان شرقی و ارتباط احتمالی آن با کربن آلی خاک مورد بررسی قرار گرفت. بدین منظور نمونه­های خاک از دو کاربری مرتع و زراعی با استفاده از روش نمونه­برداری خطی جمع‌آوری و 12 ویژگی فیزیکی و شیمیایی خاک اندازه­گیری و مقایسه آماری بین آن­ها انجام شد. با استفاده از روش تجزیه مؤلفه­ اصلی، حداقل مجموعه داده­ها مؤثر بر کیفیت خاک استخراج گردید. سپس با کمک توابع امتیازدهی غیر­خطی، شاخص کیفیت خاک تخمین زده شد. در نهایت الگوهای ارتباطی بین موثرترین نشانگر شناسایی شده و سایر ویژگی­های خاک با استفاده از رگرسیون چند متغیره مورد بررسی قرار گرفت. نتایج نشان داد که مقدار شاخص کیفیت خاک مرتع (78/0) به طور معنی­داری بالاتر از خاک زراعی (63/0) بود. کربن آلی بالاترین امتیاز (73/0) را در محاسبه کیفیت خاک به خود اختصاص داد. میانگین وزنی قطر خاکدانه (72/0)، رس (93/0)، جرم مخصوص ظاهری (24/0-) و رطوبت اشباع در خاک مرتع (04/0) و اسیدیته (13/0-) و هدایت الکتریکی (48/0-) در خاک زراعی ارتباط معنی­داری (بیشترین ضریب رگرسیونی) را با کربن آلی نشان دادند. به­طورکلی می­توان بیان نمود که کاربری­های­ مختلف نقش مهمی را در تغییر کیفیت خاک از طریق اثرگذاری بر خصوصیات فیزیکی و شیمیایی خاک و به­تبع آن تغییر در ورودی کربن آلی به خاک و حفظ آن در خاک ایفاء می­کنند

کلیدواژه‌ها

موضوعات


Abbas, F., Hammad, H. M., Ishaq, W., Farooque, A. A., Bakhat, H. F., Zia, Z., ... & Cerdà, A. (2020). A review of soil carbon dynamics resulting from agricultural practices. Journal of Environmental Management268, 110319.https://doi.org/10.1016/j.jenvman.2020.110319
Abera, Y., & Belachew, T. (2011). Effects of landuse on soil organic carbon and nitrogen in soils of Bale, Southeastern Ethiopia. Tropical and Subtropical Agroecosystems, 14(1), 229-235.
Alori, E. T., Glick, B. R., & Babalola, O. O. (2017). Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiology, 8, 971. https://doi.org/10.3389/fmicb.2017.00971
Alves de Castro Lopes, A., Gomes de Sousa, D. M., Chaer, G. M., Bueno dos Reis Junior, F., Goedert, W. J., & de Carvalho Mendes, I. (2013). Interpretation of microbial soil indicators as a function of crop yield and organic carbon. Soil Science Society of America Journal, 77(2), 461-472.  https://doi.org/10.2136/sssaj2012.0191
Andrews, S. S., Karlen, D., & Mitchell, J. (2002). A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agriculture, Ecosystems & Environment, 90(1), 25-45. https://doi.org/10.1016/S0167-8809(01)00174-8
Armenise, E., Redmile-Gordon, M., Stellacci, A., Ciccarese, A., & Rubino, P. (2013). Developing a soil quality index to compare soil fitness for agricultural use under different managements in the Mediterranean environment. Soil and Tillage Research, 130, 91-98.  https://doi.org/10.1016/j.still.2013.02.013
Bai, Z., Caspari, T., Gonzalez, M. R., Batjes, N. H., Mäder, P., Bünemann, E. K., ... & Tóth, Z. (2018). Effects of agricultural management practices on soil quality: A review of long-term experiments for Europe and China. Agriculture, Ecosystems & Environment265, 1-7. https://doi.org/10.1016/j.agee.2018.05.028
Bastida, F., Moreno, J. L., Hernández, T., & García, C. (2006). Microbiological degradation index of soils in a semiarid climate. Soil Biology and Biochemistry, 38(12), 3463-3473 .https://doi.org/10.1016/j.soilbio.2006.06.001
Bengtsson, J., Bullock, J. M., Egoh, B., Everson, C., Everson, T., O'connor, T., ... & Lindborg, R. (2019). Grasslands—more important for ecosystem services than you might think. Ecosphere10(2), e02582. https://doi.org/10.1002/ecs2.2582
Blake, G. R., & Hartge, K. (1986). Bulk density. Methods of soil analysis: Part 1 Physical and mineralogical methods, 5, 363-375.  https://doi.org/10.2136/sssabookser5.1.2ed.c13
Bremner, J. M., & Mulvaney, C. (1982). Nitrogen—total. Methods of soil analysis: part 2 chemical and microbiological properties, 9, 595-624. https://doi.org/10.2134/agronmonogr9.2.2ed.c31
Bünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., De Goede, R., ... & Brussaard, L. (2018). Soil quality–A critical review. Soil Biology and Biochemistry120, 105-125. https://doi.org/10.1016/j.soilbio.2018.01.030
Buraka, T., Elias, E., & Lelago, A. (2022). Soil organic carbon and its' stock potential in different land-use types along slope position in Coka watershed, Southern Ethiopia. Heliyon, 8(8), e10261. https://doi.org/10.1016/j.heliyon.2022.e10261
Carter, M., Parton, W., Rowland, I., Schultz, J., & Steed, G. (1993). Simulation of soil organic carbon and nitrogen changes in cereal and pasture systems of southern Australia. Soil Research, 31(4), 481-491. https://doi.org/10.1071/SR9930481
Chahouki, M. A. Z., Ahvazi, L. K., & Azarnivand, H. (2011). Environmental factors affecting distribution of vegetation communities in Iranian rangelands. Vegetos, 23(2), 1-15.
Chapman, H. (1965). Cation‐exchange capacity. Methods of soil analysis: part 2 chemical and microbiological properties, 9, 891-901. https://doi.org/10.2134/agronmonogr9.2.c6
Durães, N., Novo, L. A., Candeias, C., & Da Silva, E. F. (2018). Distribution, transport and fate of pollutants. In Soil Pollution (29-57). Elsevier. https://doi.org/10.1016/B978-0-12-849873-6.00002-9
Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Bakker, D. C., Hauck, J., ... & Zeng, J. (2022). Global carbon budget 2021. Earth system science data14(4), 1917-2005. https://doi.org/10.5194/essd-14-1917-2022
Gee, G. W., & Bauder, J. W. (1986). Particle size analysis. Methods of soil analysis: Part 1 Physical and mineralogical methods, 5, 383-411. https://doi.org/10.2136/sssabookser5.1.2ed.c15
Golchin, A., & Asgari, H. (2008). Land use effects on soil quality indicators in north-eastern Iran. Soil Research, 46(1), 27-36. https://doi.org/10.1071/SR07049
Hajabbasi, M. A., Besalatpour, A., & Melali, A. R. (2008). Impacts of Converting Rangelands to Cultivated Land on Physical and Chemical Properties of Soils in West and Southwest of Isfahan. Journal of Water and Soil Science, 11(42), 525-534. [In Persian] http://dorl.net/dor/20.1001.1.24763594.1386.11.42.44.8
Hezarjaribi, A., Nosrati Karizak, F., & Abdollahnezhad, K. (2013). The Prediction Possibility of Soil Cation Exchange Capacity by Using of Easily Accessible Soil Parameters. Water and Soil, 27(4), 712-719. [In Persian] https://doi.org/10.22067/jsw.v0i0.28092
Jaksic, S., Ninkov, J., Milic, S., Vasin, J., Zivanov, M., Perovic, V., ... & Komlen, V. (2021). Topographic Position, Land Use and Soil Management Effects on Soil Organic Carbon (Vineyard Region of Nis, Serbia). Agronomy-Basel11(7). https://doi.org/10.3390/agronomy11071438
Janes-Bassett, V., Davies, J., Rowe, E. C., & Tipping, E. (2020). Simulating long-term carbon nitrogen and phosphorus biogeochemical cycling in agricultural environments. Science of the Total Environment, 714, 136599. https://doi.org/10.1016/j.scitotenv.2020.136599
Johnson, A. R., & Wichern, D. W. (1988). Applied Multivariate Statistical Analysis. Biometrics44(3), 920. https://pesquisa.bvsalud.org/portal/resource/pt/dan-667
Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20(1), 141-151. https://doi.org/10.1177/001316446002000116
Keller, T., Sandin, M., Colombi, T., Horn, R., & Or, D. (2019). Historical increase in agricultural machinery weights enhanced soil stress levels and adversely affected soil functioning. Soil and Tillage Research, 194, 104293. https://doi.org/10.1016/j.still.2019.104293
Kemper, W. D., & Rosenau, R. C. (1986). Aggregate stability and size distribution. Methods of soil analysis: Part 1 Physical and mineralogical methods, 5, 425-442.  https://doi.org/10.2136/sssabookser5.1.2ed.c17
Khalil, I. M., Francaviglia, R., & Henry, B. (2019). Strategic management of grazing grassland systems to maintain and increase organic carbon in soils. Frazão LA.(eds.). CO2 Sequestration, 45. http://hdl.handle.net/10197/9672
Li, Y., Dong, S., Wen, L., Wang, X., & Wu, Y. (2013). Assessing the soil quality of alpine grasslands in the Qinghai-Tibetan Plateau using a modified soil quality index. Environmental Monitoring and Assessment, 185, 8011-8022. https://doi.org/10.1007/s10661-013-3151-1
Ling, L., Fu, Y., Jeewani, P. H., Tang, C., Pan, S., Reid, B. J., ... & Xu, J. (2021). Organic matter chemistry and bacterial community structure regulate decomposition processes in post-fire forest soils. Soil Biology and Biochemistry160, 108311. https://doi.org/10.1016/j.soilbio.2021.108311
Liu, Z., Zhou, W., Shen, J., He, P., Lei, Q., & Liang, G. (2014). A simple assessment on spatial variability of rice yield and selected soil chemical properties of paddy fields in South China. Geoderma, 235, 39-47. https://doi.org/10.1016/j.geoderma.2014.06.027
Maghami Moghim, F., Karimi, A. R., Bagheri Bodaghabadi, M., & Emami, H. (2022). Evaluating the Role of Different Management Systems on Soil Quality Index Using Crop Yield (Case Study: Neyshabour Plain, Iran). Water and Soil, 36(1), 95-112. [In Persian] https://doi.org/10.22067/jsw.2022.74026.1120
Martinez-Mena, M., Lopez, J., Almagro, M., Boix-Fayos, C., & Albaladejo, J. (2008). Effect of water erosion and cultivation on the soil carbon stock in a semiarid area of South-East Spain. Soil and Tillage Research, 99(1), 119-129. https://doi.org/10.1016/j.still.2008.01.009
Mazzoncini, M., Sapkota, T. B., Barberi, P., Antichi, D., & Risaliti, R. (2011). Long-term effect of tillage, nitrogen fertilization and cover crops on soil organic carbon and total nitrogen content. Soil and Tillage Research, 114(2), 165-174.  https://doi.org/10.1016/j.still.2011.05.001
Nawaz, M. F., Bourrie, G., & Trolard, F. (2013). Soil compaction impact and modelling. A Review. Agronomy for Sustainable Development, 33, 291-309. https://doi.org/10.1007/s13593-011-0071-8
Ndzelu, B. S., Dou, S., Zhang, X., Zhang, Y., Ma, R., & Liu, X. (2021). Tillage effects on humus composition and humic acid structural characteristics in soil aggregate-size fractions. Soil and Tillage Research, 213, 105090. https://doi.org/10.1016/j.still.2021.105090
Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 2 chemical and microbiological properties9, 539-579. https://doi.org/10.2134/agronmonogr9.2.2ed.c29
Ordoñez-Morales, K. D., Cadena-Zapata, M., Zermeño-González, A., & Campos-Magaña, S. (2019). Effect of tillage systems on physical properties of a clay loam soil under oats. Agriculture9(3), 62. https://doi.org/10.3390/agriculture9030062
Qi, Y., Darilek, J. L., Huang, B., Zhao, Y., Sun, W., & Gu, Z. (2009). Evaluating soil quality indices in an agricultural region of Jiangsu Province, China. Geoderma149(3-4), 325-334. https://doi.org/10.1016/j.geoderma.2008.12.015
Rahmanipour, F., Marzaioli, R., Bahrami, H. A., Fereidouni, Z., & Bandarabadi, S. R. (2014). Assessment of soil quality indices in agricultural lands of Qazvin Province, Iran. Ecological Indicators, 40, 19-26. https://doi.org/10.1016/j.ecolind.2013.12.003
Raiesi, F. (2017). A minimum data set and soil quality index to quantify the effect of land use conversion on soil quality and degradation in native rangelands of upland arid and semiarid regions. Ecological Indicators, 75, 307-320. https://doi.org/10.1016/j.ecolind.2016.12.049
Raiesi, F., & Beheshti, A. (2014). Soil C turnover, microbial biomass and respiration, and enzymatic activities following rangeland conversion to wheat–alfalfa cropping in a semi-arid climate. Environmental Earth Sciences, 72, 5073-5088. https://doi.org/10.1007/s12665-014-3376-5
Raiesi, F., & Riahi, M. (2014). The influence of grazing exclosure on soil C stocks and dynamics, and ecological indicators in upland arid and semi-arid rangelands. Ecological Indicators, 41, 145-154.  https://doi.org/10.1016/j.ecolind.2014.01.040
Reichenbach, M., Fiener, P., Garland, G., Griepentrog, M., Six, J & ,. Doetterl, S. (2021). The role of geochemistry in organic carbon stabilization against microbial decomposition in tropical rainforest soils. Soil, 7(2), 453-475. https://doi.org/10.5194/soil-7-453-2021
Rhoades, J. D. (1976). Soil electrical conductivity and soil salinity: new formulations and calibrations. Soil Science Society of America Journal40, 651-655.
Salek-Gilani, S., Raiesi, F., Tahmasebi, P., & Ghorbani, N. (2013). Soil organic matter in restored rangelands following cessation of rainfed cropping in a mountainous semi-arid landscape. Nutrient cycling in agroecosystems96, 215-232. https://doi.org/10.1007/s10705-013-9587-4
Shaygan, M., & Baumgartl, T. (2022). Reclamation of salt-affected land: A review. Soil systems, 6(3), 61. https://doi.org/10.3390/soilsystems6030061
Sheidai Karkaj, E., Sepehry, A., Barani, H., & Motamedi, J. (2017). Soil organic carbon reserve relationship with some soil properties in East Azerbaijan rangelands. Rangeland11(2), 125-138. [In Persian] http://rangelandsrm.ir/article-1-475-fa.html
Shohab Arkhazloo, H., Emami, H., Haghnia, G., & Karimi, A. R. (2011). Determining most Important Properties for Soil Quality Indices of Agriculture and Range Lands in a some Parts of Southern Mashhad. Water and Soil, 25(5). [In Persian] https://doi.org/10.22067/jsw.v0i--.11256
Shrivastava, P., & Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi journal of biological sciences, 22(2), 123-131. https://doi.org/10.1016/j.sjbs.2014.12.001
Singh, A. (2019). Poor-drainage-induced salinization of agricultural lands: Management through structural measures. Land use Policy, 82, 463-457. https://doi.org/10.1016/j.landusepol.2018.12.032
Spohn, M., & Giani, L. (2011). Impacts of land use change on soil aggregation and aggregate stabilizing compounds as dependent on time. Soil Biology and Biochemistry, 43(5), 1081-1088.  https://doi.org/10.1016/j.soilbio.2011.01.029
Szilassi, P., Jordan, G., Van Rompaey, A., & Csillag, G. (2006). Impacts of historical land use changes on erosion and agricultural soil properties in the Kali Basin at Lake Balaton, Hungary. Catena68(2-3), 96-108. https://doi.org/10.1016/j.catena.2006.03.010
Szostek, M., Szpunar-Krok, E., Pawlak, R., Stanek-Tarkowska, J., & Ilek, A. (2022). Effect of different tillage systems on soil organic carbon and enzymatic activity. Agronomy12(1), 208. https://doi.org/10.3390/agronomy12010208
Thomas, G. W. (1996). Soil pH and soil acidity. Methods of soil analysis: part 3 chemical methods, 5, 475-490. https://doi.org/10.2136/sssabookser5.3.c16
Vanaee, F., Karami, P., Joneydi jafari, H., & Nabialahi, K. (2017). Simulation of soil organic carbon dynamic in meadow ecosystems under different management practices using CENTURY model. Rangeland, 10(4), 439-449.   [In Persian] https://dor.isc.ac/dor/20.1001.1.20080891.1395.10.4.6.2
Vargas, L., Willemen, L., & Hein, L. (2019). Assessing the capacity of ecosystems to supply ecosystem services using remote sensing and an ecosystem accounting approach. Environmental Management63, 1-15. https://doi.org/10.1007/s00267-018-1110-x
Xu, M., Lou, Y., Sun, X., Wang, W., Baniyamuddin, M., & Zhao, K. (2011). Soil organic carbon active fractions as early indicators for total carbon change under straw incorporation. Biology and Fertility of Soils47, 745-752. https://doi.org/10.1007/s00374-011-0579-8
Yaghmaeian Mahabadi, N., Fayyaz, H., Sabouri, A., & Shirinfekr, A. (2021). Comparison of Soil Quality Evaluation Methods and Their Relationships with Tea Yield in West Guilan Province. Iranian Journal of Soil Research, 34(4), 435-450. [In Persian] https://doi.org/10.22092/ijsr.2021.351656.551
Zhang, Y., Wang, L., Jiang, J., Zhang, J., Zhang, Z., & Zhang, M. (2022). Application of soil quality index to determine the effects of different vegetation types on soil quality in the Yellow River Delta wetland. Ecological Indicators, 141, 109116.  https://doi.org/10.1016/j.ecolind.2022.109116
Zhao, J., Feng, X., Deng, L., Yang, Y., Zhao, Z., Zhao, P., ... & Fu, B. (2020). Quantifying the effects of vegetation restorations on the soil erosion export and nutrient loss on the Loess Plateau. Frontiers in Plant Science11, 573126. https://doi.org/10.3389/fpls.2020.573126
Zohdi, M., Arzani, H., Javadi, S., Jalili, A., & Khorshidi, G. (2018). Government and range management in Iran (policy, laws and plans). Applied Ecology & Environmental Research, 16(4), 4537-4654 http://dx.doi.org/10.15666/aeer/1604_46374654
CAPTCHA Image