بررسی تغییرپذیری رگبارها با استفاده از روش گورجی (مطالعه موردی: ایستگاه‌های منتخب استان مازندران)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی منابع آب، گروه علوم و مهندسی آب، دانشگاه تبریز، تبریز، ایران

2 استاد گروه علوم و مهندسی آب، دانشگاه تبریز، تبریز، ایران

3 استاد گروه جغرافیای طبیعی، دانشگاه تبریز، تبریز، ایران

10.22067/geoeh.2024.89692.1518

چکیده

مطالعه الگوهای بارشی در ایستگاه­های مختلف از دیدگاه هیدرولوژیکی از اهمیت بسزایی برخوردار است. در مطالعه حاضر، با استفاده از 564 رگبار ثبت شده در سه ایستگاه باران­سنجی استان­ مازندران (ساری، عباس­آباد و فیروزجاه،) منحنی‌های هاف در سه کلاس بارشی 1) کمتر از 6، 2) 12-6 و 3) بیش از 12 ساعت رسم شدند. با استفاده از منحنی­های هاف 50 درصد، رگبارها از دیدگاه چارکی مورد بررسی قرار گرفتند سپس، هیتوگراف بارش طرح برای ایستگاه­های منتخب در کلاس­های بارشی مختلف رسم شد. در ادامه، به منظور بررسی میزان تغییر پذیری رگبارها، از یک روش نوین که بر پایه فواصل قائم منحنی­های هاف 80 و 20 درصد ( که با V نشان داده شد) و نیز مقادیر منحنی هاف 50 درصد (d50) در مقاطع زمانی 25، 50 و 75 درصد است، استفاده گردید. نتایج نشان داد که تیپ اغلب رگبارها در کلاس­­های بارشی مختلف، از نوع چارک دومی بود. همچنین، نتایج حاکی از آن بود که در اغلب کلاس­ها، درصد قابل توجهی از تمامی مقدار بارش (بیش از 80 درصد)، تا دهک هفتم مدت دوام بارش نازل­ می­شود. با حرکت به سمت دهک­های آخر، میزان درصد بارش نازل شده کاهش می­یابد. با توجه به نتایج مشخص شد که بیشترین میزان تغییرپذیری رگبارها در کلاس­های بارشی 6-0، 12-6 و بیش از 12 ساعت به­ترتیب، مربوط به ایستگاه‌های ساری، عباس­آباد و فیروزجاه می­باشد.

کلیدواژه‌ها

موضوعات


Alavi, E. S., Dinpashoh, Y., & Asadi, E. (2019). Analysis of hourly storms for the purpose of extracting design hyetographs using the Huff Method. Geography and Environmental Planning30(3), 41-58. [In Persian] https://doi.org/10.22108/gep.2019.116484.1141
Anonymous. (2012). Climate of Mazandaran Province. Formal Website of Young Correspondents Club; Economic Diploma. )  Date of Access 01 12 2024). [In Persian] https://www.yjc.ir/fa/news/4789307/
Awadallah, A. G., & Younan, N. S. (2012). Conservative design rainfall distribution for application in arid regions with sparse data. Journal of Arid Environments, 79, 66-75. https://doi.org/10.1016/j.jaridenv.2011.11.032
Baek, S. S., Choi, D. H., Jung, J. W., Lee, H. J., Yoon, K. S., & Cho, K. H. (2015). Optimizing low impact development (LID) for stormwater runoff treatment in urban area, Korea: experimental and modeling approach. Water Research, 86, 122-131. https://doi.org/10.1016/j.watres.2015.08.038
Bezak, N., Sraj, M., Rusjan, S., & Mikos, M. (2018). Impact of the rainfall duration and temporal rainfall distribution defined using the Huff curvs on the hydraulic flood modelling results. Geosciences, 8(2), 69.  https://doi.org/10.3390/geosciences8020069
Dinpashoh, Y., & Alavi, E. (2024). Derivation of Huff curves for the four stations in Great Karun River in Khuzestan provinces. Journal of Civil and Environmental Engineering54.1(114), 115-130. [In Persian] https://doi.org/10.22034/jcee.2022.28050.1678
Dinpashoh, Y., & Vakili Azar S. (2019). Temporal analysis of storms in East of Urmia Lake using the Huff curves method. Journal of Water and Soil Resources Conservation, 8(3), 27-44. [In Persian] https://sanad.iau.ir/en/Article/829069
Dolsak, D., Bezak, N., & Sraj, M. (2016). Temporal characteristics of rainfall events under three climate types in Slovenia. Journal of Hydrology, 541, 1395-1405. https://doi.org/10.1016/j.jhydrol.2016.08.047
Dunkerley, D. (2022). Huff quartile classification of rainfall intensity profiles (‘storm patterns’): A modified approach employing an intensity threshold. Catena, 216, 106371-106384.        https://doi.org/10.1016/j.catena.2022.106371
Golian, S., Saghafian, B.‚ & Maknoon‚ R. (2010). Derivation of probabilistic thresholds of spatially distributed rainfall for flood forecasting‚ Water Resources Management, 13(26)‚ 3547–3559.        http://dx.doi.org/10.1007/s11269-010-9619-7
Gordji, L., Bonta, J. V., & Altinakar, M. S. (2020). Climate- related trends of within-storm intensities using dimensionless temporal storm distributions. Journal of Hydrologic Engineering, 25(5), 1-31.  https://doi.org/10.1061/(ASCE)HE.1943-5584.0001911
Hatami-Yazd, A., Taghvaee-Abrishami, A., & Ghahraman, B. (2005). Rainfall temporal pattern for Khorasan province, Iran. Iran-Water Resources Research1(3), 54-64. [In Persian] https://www.iwrr.ir/article_15168.html?
Huff, F. (1967). Time distribution of rainfall in heavy storms. Water Resources Research, 3(4), 1007- 1019. https://doi.org/10.1029/WR003i004p01007
Khaksafidi, A., Noura, N., Biroudian, N., & Najafi Nejad, A. (2010). Rainfall temporal distribution patterns in Sistan & Balouchestan Province (Iran). Journal of Water and Soil Conservation, 17(1), 45-61. [In Persian] https://dor.isc.ac/dor/20.1001.1.23222069.1389.17.1.3.0
Loukas, A., & Quick, M. C. (1994). Precipitation distribution in coastal British Columbia. Water Resources Bulletin, 30(4), 705-725. https://doi.org/10.1111/j.1752-1688.1994.tb03324.x
Mollaie, A., & Telvari, A. R. (2009). Determination of rainfall temporal pattern in Kohkiloyeh and Boyerahmad province by Pilgrim method. Watershed Engineering and Management1(2), 70-77. [In Persian] https://dor.isc.ac/dor/20.1001.1.22519300.1388.1.2.1.3
Moradnezhadi, M., Malekian, A., Jourgholami, M., & Ghasemi, A. (2016). Daily rainfall temporal distribution patterns and its relations with short-term precipitations in coastal–forest areas (Case study: Nowshahr Station, Northern Iran). Journal of Range and Watershed Managment69 (2), 475-485. [In Persian] https://doi.org/10.22059/jrwm.2016.61697
 Pan, C., Wang, X., Liu, L., Huang, H., & Wang, D. (2017). Improvement to the Huff curve for design storms and urban flooding simulations in Guangzhou, China. Water, 9, 411-429. https://doi.org/10.3390/w9060411
 Pilgrim, D. H., & Cordery, I. (1975). Rainfall temporal patterns for design flood. Journal of the Hydraulics Division, ASCE, 101, 81-95.  https://doi.org/10.1061/JYCEAJ.0004197
 Rahman, A., Islam, S. M., Rahman, K., Khan, S., & Shrestha, S. (2006). A windows based program to derive design rainfall temporal patterns for design flood estimation. Proceeding of 30 th Hydrology and Water Resources Symposium, Dec. Tasmania, 1881-1886.
Terranova, O. G., & Iaquinta, P. (2011). Temporal properties of rainfall events in Calabria (Southern Italy). Natural Hazards Earth System Sciences, 11, 751–757. https://nhess.copernicus.org/articles/11/751/2011/
Vakili Azar, S., & Dinpazhoh, Y. (2019). Development of Huff curves for the five selected stations in the East of Urmia Lake. Water and Soil32(6), 1109-1123. [In Persian]  https://doi.org/10.22067/jsw.v32i6.72443
Xlong, J., Tang, C., Gong, L., & Chen, M. (2021). Variability of rainfall time distributions and their impact on peak discharge in the Wenchuan County, China. Bulletin of Engineering Geology and the Environment, 80, 7113-7129. https://doi.org/10.1007/s10064-021-02376-2
Zarei, Y., Khorshiddoust, A. M., Rezaee Banafshe, M., & Rostam zadeh, H. (2023). Assessing the impacts of global climate change on climate elements of temperature and precipitation in disparate climatic zones of Iran using RCP scenarios. Journal of Geography and Planning27(83), 63-71. [In Persian] https://doi.org/10.22034/gp.2023.10791
CAPTCHA Image