ثقفی، مهدی؛ رضائیمقدم، محمدحسین؛ 1396. مبانی ژئومورفولوژی رودخانهای. رو چارلتون،. تهران: انتشارات سمت.https://samta.samt.ac.ir/product/14908
رضائیمقدم، محمدحسین؛ حجازی، سید اسدالله؛ ولیزاده کامران، خلیل؛ رحیمپور، توحید؛ 1399. تحلیل خصوصیات هیدروژئومورفیک حوضه آبریز الندچای بهمنظور اولویتبندی زیرحوضهها از نظر حساسیت سیل خیزی. جغرافیا و مخاطرات محیطی. شماره 33. 83-61.https://doi.org/10.22067/geo.v9i1.84675
روستایی، شهرام؛ موسوی، رمضان؛ علیزاده گرجی، غلامرضا؛ 1396. تهیه نقشه سیلاب حوضه آبریز نکارود با استفاده از مدل SCS-CN و GIS/RS. پژوهشهای ژئومورفولوژی کمی. شماره 1. 118-108.
https://www.geomorphologyjournal.ir/article_78078.html
میرموسوی، سید حسین؛ اسمعیلی، حسین؛ 1400. پهنهبندی نواحی سیلخیز با استفاده از سامانه اطلاعات جغرافیایی (GIS) و سنجشازدور (RS)، مطالعه موردی: شهرستان داراب. مخاطرات محیط طبیعی. دوره 10. شماره 27. 46-21.https://jneh.usb.ac.ir/article_5799.html
Aksoy, H., Kirca, V.S.O., Burgan, H.I., Kellecioglu, D. 2016., Hydrological and hydraulic models for determination of flood-prone and flood inundation areas, The 7th International Water Resources Management Conference of ICWRS, 373, 137–141.
https://doi.org/10.5194/piahs-373-137-2016
Alexander, M., Viavattene, C., Faulkner, H., Priest, S., 2011. A GIS-based flood risk assessment tool: supporting flood incident management at the local scale. Flood Hazard Research Centre, Middlesex University, London. www.floodrisk.org.uk
Alfieri, L., Bisselink, B., Dottori, F., Naumann, G., Roo, A., Salamon, P., Wyser, K., Feyen, L., 2017. Global projections of river flood risk in a warmer world, Earths Future, 5(2): 171-182.
https://doi.org/10.1002/2016EF000485
Barker, D.M., Lawler, D.M., Knight, D.W., Morris, D.G., Davies, H.N., Stewart, E.J., 2009. Longitudinal distributions of river flood power: the combined automated flood, elevation and stream power (CAFES) methodology. Earth Surface Processes and Landforms. 34, 280–290.
https://doi.org/10.1002/esp.1723
Beckers, A., Dewals, B., Erpicum, S., Dujardin, S., Detrembleur, S., Teller, J., 2013. Contribution of land use changes to future flood damage along the river Meuse in the Walloon region. Natural Hazards and Earth System Sciences. 13, 2301–2318. https://doi.org/10.5194/nhess-13-2301-2013
Benito, G., Rico, M., Sánchez-Moya, Y., Sopeña, A., Thorndycraft, V.R., Barriendos, M., 2010. The impact of late Holocene climatic variability and land use change on the flood hydrology of the Guadalentín River, southeast Spain. Global and Planetary Change. 70, 53–63. https://doi.org/10.1016/j.gloplacha.2009.11.007
Bui, D.T., Pradhan, B., Nampak, H., Bui, Q.T., Tran, Q.A., Nguyen, Q.P., 2016. Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibility modeling in a high-frequency tropical cyclone area using GIS. Journal of Hydrology. 540, 317–330.
https://doi.org/10.1016/j.jhydrol.2016.06.027
Cevik, E., Topal, T., 2003. GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environmental Geology. 44 (8), 949–962. https://doi.org/10.1007/s00254-003-0838-6
Choubin, B., Moradi, E., Golshan, M., Adamowski, J., Sajedi-Hosseini, F., Mosavi, A., 2019. An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Science of the Total Environment, 651, 2087-2096.
https://doi.org/10.1016/j.scitotenv.2018.10.064
Cohen, W.W., 1995. Fast effective rule induction. In: Prieditis, A., Russell, S. (Eds.), Proceedings of the 12th International Conference on Machine Learning, 115–123. Morgan Kaufmann.
http://citeseer.ist.psu.edu/cohen95fast.html
Costache, R., Hong, H., Bao Pham, Q., 2020. Comparative assessment of the flash-flood potential within small mountain catchments using bivariate statistics and their novel hybrid integration with machine learning models, Science of The Total Environment, 711, 134514.
https://doi.org/10.1016/j.scitotenv.2019.134514
Das, S., 2018. Geographic information system and AHP based flood hazard zonation of Vaitarna basin, Maharashtra, India, Arab. J. Geosci, 11(19): 576.
Das, S., 2018. Geomorphic characteristics of a bedrock river inferred from drainage quantification, longitudinal profile, knickzone identification and concavity analysis: a DEM-based study. Arab J. Geosci. 11 (21), 680. https://doi.org/10.1007/s12517-018-4039-8
Das, S., Pardeshi, S.D., 2018. Integration of different influencing factors in GIS to delineate groundwater potential areas using IF and FR techniques: a study of Pravara basin, Maharashtra, India. Applied Water Science. 8(7), 197.
https://doi.org/10.1007/s13201-018-0848-x
Ercanoglu, M., Gokceoglu, C., 2002. Assessment of landslide susceptibility for a landslide prone area (north of Yenice, NW Turkey) by fuzzy approach. Environmental Geology. 41, 720–730. https://doi.org/10.1007/s00254-001-0454-2
Fernandez, D.S., Lutz, M.A., 2010. Urban flood hazard zoning in Tucuman Province, Argentina, using GIS and multicriteria decision analysis. Engineering Geology. 111, 90–98. https://doi.org/10.1016/j.enggeo.2009.12.006
Friedman, J.H., Hastie, T.J., Tibshirani, R., 2000. Additive logistic regression: a statistical view of boosting (With discussion and a rejoinder by the authors), The Annals of Statistics, 28(2): 337-407. https://doi.org/10.1214/aos/1016120463
García-Ruiz, J.M., Regüés, D., Alvera, B., Lana-Renault, N., Serrano-Muela, P., NadalRomero, E., 2008. Flood generation and sediment transport in experimental catchments affected by land use changes in the central Pyrenees. Journal of Hydrology. 356, 245–260. https://doi.org/10.1016/j.jhydrol.2008.04.013
Garde R. J., 2006. River Morphology. New Delhi: Published by New Age International (P) Ltd.
Gittleman, M., Farmer, C.J., Kremer, P., McPhearson, T., 2017. Estimating stormwater runoff for community gardens in New York City, Urban Ecosystems. 20(1), 129–139. https://doi.org/10.1007/s11252-016-0575-8
Gokceoglu, C., Sonmez, H., Nefeslioglu, H.A., Duman, T.Y., Can, T., 2005. The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity. Engineering Geology. 81, 65–83. https://doi.org/10.1016/j.enggeo.2005.07.011
Hair, J.F., Black, W.C., Babin, B.J., Anderson, R.E., 2009. Multivariate data analysis. Prentice Hall, New York.
Haupt, L.R., Haupt, S.E., 2004. Practical Genetic Algorithms. 2nd edition. John Wiley & Sons, Inc. https://
www.wiley.com/ en-ie/ Practical+ Genetic+ Algorithms% 2C+2nd+ Edition -p-9780471455653
Holland, J.H., 1975. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor. https://mitpress.mit.edu/9780262581110/adaptation-in-natural-and-artificial-systems/
Hong, H., Panahi, M., Shirzadi, A., Ma, T., Liu, J., Zhu, A., Chen, W., Kougias, I., Kazakis, N., 2018. Flood susceptibility assessment in Hengfeng area coupling adaptive neurofuzzy inference system with genetic algorithm and differential evolution. Science of The Total Environment. 621, 1124–1141. https://doi.org/10.1016/j.scitotenv.2017.10.114
Hong, H., Tsangaratos, P., Ilia, I., Liu, J., Zhu, A., Chen, W., 2018. Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China, Science of the Total Environment, 625, 575–588.
https://doi.org/10.1016/j.scitotenv.2017.12.256
Iba, W., Langley, P., 1992. Induction of one-level decision trees. In ML92: Proceedings of the Ninth International Conference on Machine Learning, Aberdeen, Scotland, 1–3 July 1992, San Francisco, CA: Morgan Kaufmann, 233–240. https://doi.org/10.1016/B978-1-55860-247-2.50035-8
Kavzoglu, T., Sahin, E.K., Colkesen, I., 2015. Selecting optimal conditioning factors in shallow translational landslide susceptibility mapping using genetic algorithm, Engineering Geology, 192, 101–112. https://doi.org/10.1016/j.enggeo.2015.04.004
Khosravi, K., Nohani, E., Maroufinia, E., Pourghasemi, H.R., 2016. A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique. Natural Hazards. 83(2), 947–987. https://doi.org/10.1007/s11069-016-2357-2
Knighton, A.D., 1999. Downstream variation in stream power. Geomorphology 29,293–306. https://doi.org/10.1016/S0169-555X(99)00015-X
Kumar Rai, P., Narayan Mishra, V., Mohan, K., 2017. A study of morphometric evaluation of the Son basin, India using geospatial approach, Remote Sensing Applications: Society and Environment. 7, 9-20.
http://dx.doi.org/10.1016/j.rsase.2017.05.001
Kwak, Y., Kondoh, A., 2008. A Study on the Extraction of Multi-Factor Influencing Floods from Remote Sensing Images and GIS Data: A Case Study in Nackdong Basin, South Korea. Centre for Remote Sensing, Chiba. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B8. Beijing 2008.
Lee, M.J., Kang, J.E., Jeon, S., 2012. Application of frequency ratio model and validation for predictive flooded area susceptibility mapping using GIS. Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International, 895–898.
https://doi.org/10.1109/IGARSS.2012.6351414
Lee, S., Kim, J.-C., Jung, H.-S., Lee, M.J., Lee, S., 2017. Spatial prediction of flood susceptibility using random-forest and boosted-tree models in Seoul metropolitan city, Korea. Geomatics, Natural Hazards and Risk, 8(2): 1185–1203.
Mahmood, Sh., Rahman, A., 2019. Flash flood susceptibility modeling using geo- morphometric and hydrological approaches in Panjkora Basin, Eastern Hindu Kush, Pakistan. Environmental Earth Sciences, 78(43): 1-16,
https://doi.org/10.1007/s12665-018-8041-y
Menard, S., 2001. Applied Logistic Regression Analysis. 2nd ed. Sage Publication, Thousand Oaks, CA, USA. https://methods.sagepub.com/book/applied-logistic-regression-analysis
Mitchell, M. 1996. An Introduction to Genetic Algorithms. MIT Press, Cambridge, 221pp. https://mitpress.mit.edu/9780262631853/an-introduction-to-genetic-algorithms
Opperman, J.J., Galloway, G.E., Fargione, J., Mount, J.F., Richter, B.D., Secchi, S., 2009. Sustainable floodplains through large-scale reconnection to rivers. Science. 326(5959), 1487–1488. https://doi.org/10.1126/science.1178256
Pant, N., Kumar Dubey, R., Bhatt, A., Prakash Rai, S., Semwal, P., Mishra, S., 2020. Soil erosion and food hazard zonation using morphometric and morphotectonic parameters in Upper Alaknanda River basin, Natural Hazards, 103, 3263–3301.
Pradhan, B., Abokharima, M.H., Jebur, M.N., Tehrany, M.S., 2014. Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS. Natural Hazards. 73(2), 1019–1042. http://dx.doi.org/10.1007/s11069-014-1128-1
Rahmati, O., Pourghasemi, H.R., Zeinivand, H., 2016. Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran. Geocarto International. 31(1), 42–70. https://doi.org/10.1080/10106049.2015.1041559
Roy, J., Saha, S., 2019. GIS-based gully erosion susceptibility evaluation using frequency ratio, cosine amplitude and logistic regression ensembled with fuzzy logic in Hinglo River basin, India. Remote Sensing Applications: Society and Environment 15, 100247.
https://doi.org/10.1016/j.rsase.2019.100247
Shit, P. K., Bhunia, G. S., Pourghasemi, H. R., 2020. Gully Erosion Susceptibility Mapping Based on Bayesian Weight of Evidence. In Gully Erosion Studies from India and Surrounding Regions (pp. 133-146). Springer, Cham. http://dx.doi.org/10.1007/978-3-030-23243-6_8
Tehrany, M.S., Pradhan, B., Jebur, M.N., 2013. Spatial prediction of flood susceptible areas using rule-based decision tree (DT) and a novel ensemble bivariate and multivariate statistical model in GIS. Journal of Hydrology. 504, 69–79.
https://doi.org/10.1016/j.jhydrol.2013.09.034
Tehrany, M.S., Pradhan, B., Jebur, M.N., 2014. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. Journal of Hydrology. 512, 332–343. http://dx.doi.org/10.1016/j.jhydrol.2014.03.008
Tehrany, M.S., Pradhan, B., Mansor, S., Ahmad, N., 2015. Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. Catena. 125, 91–101. http://dx.doi.org/10.1016/j.catena.2014.10.017
Tien Bui, D., Pradhan, B., Nampak, H., Bui, Q.T., Tran, Q.A., Nguyen, Q.P., 2016. Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibility modeling in a high-frequency tropical cyclone area using GIS, Journal of Hydrology, 540, 317–330.
https://doi.org/10.1016/j.jhydrol.2016.06.027
Tien Bui, D., Shirzad, A., Shahabi, H., Chapi, K., Omidvar, E., Thai Pham, B., Talebpour Asl, D., Khaledian, H., Pradhan, B., Panahi, M., Bin Ahmad, B., Rahmani, H., Grof, G., Kee, S., 2019. A Novel Ensemble Artificial Intelligence Approachfor Gully Erosion Mapping in a Semi-AridWatershed (Iran), Sensors, 19(11): 2444. https://doi.org/10.3390/s19112444
Tien Bui, D., Tsangaratos, P., Thi Ngo, P. T., Dat Pham, T., Thai Pham, B., 2019. Flash flood susceptibility modeling using an optimized fuzzy rule based feature selection technique and tree based ensemble methods, Science of the Total Environment, 668, 1038–1054.
https://doi.org/10.1016/j.scitotenv.2019.02.422
Towfiqul Islam, A.B., Talukdar, S., Mahato, S., Kundu, S., UddinEibek, K., BaoPham, Q., Kuriqi, A., ThuyLinh, N.T., 2021. Flood susceptibility modelling using advanced ensemble machine learning models, Geoscience Frontiers, 12(3): 101075.
https://doi.org/10.1016/j.gsf.2020.09.006
Trawinski, K., Cordon, O., Quirin, A., 2011. On designing fuzzy rule-based multiclassification systems by combining furia with bagging and feature selection, International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 19(4): 589–633.
https://doi.org/10.1142/S0218488511007155
USDA, S.C.S., 1986. Urban hydrology for small watersheds. Technical Release. 55, pp. 2–6.
ارسال نظر در مورد این مقاله