Investigating the Two-Dimensional HEC-RAS Model Capability for Flood Risk Mapping in the Qarachai River in Ramian, Golestan Province

Document Type : Research Article

Authors

1 PhD Candidate in Watershed Management Sciences, Lorestan University, Khoram Abad, Iran

2 Associate Professor in Hydrology, Lorestan University, Khoram Abad, Iran

3 Professor in Watershed Management, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

4 PhD in Water Science Eng. (Hydraulic Structures), Gorgan Iran

Abstract

Changes in precipitation patterns and its intensity due to the global climate change has led to intensifying floods as the most occurent natural disaster. ‏Flooding cannot be fully prevented, but its impacts can be mitigated by accurately identifying flood-prone areas and implmenting appropriate risk-based management measures. The Qarachai Watershed, located in the upstream of the Gorganrood River Basin in Golestan Province, Iran, was chosen as the study area, which has experienced several flood events in recent decades. ‏In this study, flood risk was assessed using the HEC-RAS, a two-dimensional hydraulic model. ‏Flood discharge values occured in the early 2019 were considered as model input, and based on ground truth, the manning roughness coefficient values were measured. To evaluate the results of the HEC-RAS model, some statistical criteria were used reflecting a good performance of the model. ‏The analysis showed that by increasing the return period, the extent, depth, and amount of flood risk increase. Moreover, the analysis showed that the flood zone in 100 year return period, affects parts of Seyedkalate Village. Approximately, half of the flood zone identified in this study was attributed with very low-risk. The results of the study are used to adopt appropriate strategies and plans to adapt to climate change and as an appropriate tool for identifying flood exposed and flood-prone zones.

Graphical Abstract

Investigating the Two-Dimensional HEC-RAS Model Capability for Flood Risk Mapping in the Qarachai River in Ramian, Golestan Province

Keywords

Main Subjects


اداره کل منابع طبیعی و آبخیزداری استان گلستان؛ 1386. مطالعه هیدرولوژی حوزه آبخیزه قره‌چای رامیان. مهندسی مشاور شمال. 28 ص.
وزیری، فریبرر؛ صیاد مشتاق، شاهین؛ ناصری نوع‌دوست، میرناظر؛ پیمان، بهروز؛ فتحی، ولی‍الله؛ 1363. تجزیه‌وتحلیل رگبارها در نقاط مختلف ایران، جهاد دانشگاهی دانشـگاه خواجـه نصـیرالدین طوسـی، واحـد طـرح و تحقیقات. 205 ص. https://www.sid.ir/paper/789303/fa
 
Amrei, D. and Britta, S., 2020. Flood hazard analysis in small catchments: comparison of hydrological and hydrodynamic approaches by the use of direct rainfall. Journal of flood risk management, 13: 26 p. https://doi.org/DOI:10.1016/j.jhydrol.2013.02.010.
Arcement, G. J., and Schneider, V. R. 1989. Guide for selecting Manning’s roughness coefficients for natural channels and flood plains: U. S. Geological Survey Water-Supply Paper 2339, 38 p. https://doi.org/10.3133/wsp2339
Arnell, N,W., Gosling, S. N., 2013. The impacts of climate change on river flow regimes at the global scale. J. Hydrology, 486: 351–364. https://doi.org/10.1016/j.jhydrol.2013.02.010.
Association of state floodplain managers., 2004. Reducing flood losses: is the 1% chance (100-year) flood standard sufficient? National Academies Disasters Roundtable, Assembly of the Gilbert F. White National Flood Policy Forum, Washington DC, 142. https:// biotech.law. lsu.edu/blog/nrcs143_009401.pdf
Brunner, G.W., 2016. HEC-RAS river analysis system, hydraulic reference manual. Version 5.0; Hydrologic Engineering Centre: Davis, CA, USA, 547. https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS_4.1_Reference_Manual.pdf
Chow VT., 1959. Open-Channel hydrulics. McGRAW·hill book company; I: 350. https:// heidarpour. iut.ac.ir/ sites/heidarpour.iut.ac.ir/ files/u32/open-chow.pdf
Costabile. P., Costanzo, C., Ferraro, D., Macchione, F., and Petaccia, G., 2020. Performances of the new HEC-RAS version 5 for 2-D Hydrodynamic-Based Rainfall-Runo Simulations at basin scale: comparison with a State-of-the Art Model.Water, 12 (2326): 19 p.  https://doi.org/10.3390/w12092326.
 Di Baldassarre, G., Schumann, G., Bates, P. D., Jim, E.,a nd Beven, J., 2010. Flood-plain mapping: a critical discussion of deterministic and probabilistic approaches. Hydrological Sciences Journal, 55 (3): 364-376. https://doi.org/10.1080/02626661003683389.
Dinh, Q., Balica, S., Popescu, I., and Jonoski, A., 2012. Climate change impact on flood hazard, vulnerability and risk of the Long Xuyen Quadrangle in the Mekong Delta. International Journal of River Basin Management, 10: 103-120. https://doi.org/10.1080/15715124. 2012.663383.
Ferri, M., Wehnm U., See, L., Monego, M., and Fritz, S., 2020. The value of citizen science for flood risk reduction: cost–benefit analysis of a citizen observatory in the Brenta-Bacchiglione catchment. Hydrology and Earth System Sciences, 24 (12): 5781-5798. https://doi.org/10.5194/hess-24-5781-2020.
Ghanbarpour, M. R., Salimi, S.h., Mohseni, S. M., and Zare, M., 2011. Calibration of river hydraulic model combined with GIS analysis using ground-based observation data. Research Journal of Applied Sciences, Engineering and Technology, 3 (5): 456-463. https://portal.research.lu.se/en/publications/calibration-of-river-hydraulic-model-combined-with-gis-analysis-u.
Guha-Sapir, D., Hoyois, P. h, and Below, R., 2016. Annual disaster statistical review 2015: The numbers and trends. Brussels: Centre for Research on the Epidemiology of Disasters  (CRED), 59p.https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKE0&opi=89978449.
HEC-RAS River Analysis System., 2016. User's Manual Version 5.0. U. S Army Corps of Engineers Institute for Water Resources Hydrologic Engineering Centre (HEC). 538 p. https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS%205 .0% 20 Users% 20Manual.pdf
Krause, P., Boyle, D. P., and Base, F. 2005. Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5: 89–97. https://doi.org/10.5194/ adgeo-5-89-2005.
 Kumar, N., Kumar, M., Sherring, A., Suryavanshi, S., Ahmad, A., and Lal, D., 2019. Applicability of HEC-RAS 2D and GFMS for flood extent mapping: a case study of Sangam area, Prayagraj, India. Model. Earth Syst. Environ, 6: 397–405. https://doi.org/10.1007/ s40808-019-00687-8.
McIntyre, N., and Al-Qurashi, A., 2009. Performance of ten rainfall–runoff models applied to an arid catchment in Oman.Environmental Modeling and Software, 24 (6): 726-738. https://doi.org/10.1016/j.envsoft.2008.11.001.
Mihu-Pintilie, A., Cimpianu, C. I.; Stoleriu, C. C., Pérez, M. N., and Paveluc, L. E., 2019. Using high-density LiDAR data and 2D streamflow hydraulic modeling to improve urban flood hazard maps: A HEC-RAS multi-scenario approach. Water, 11 (9) 1832: 24 p. https://doi.org/10.3390/w11091832.
Moriasi, D., Arnold, J., Van, L., Michael, W., Bingner, R., Harmel, R. D, and Veith, T L., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50 (3): 885-900. http://dx.doi.org/10.13031/ 2013.23153.
Moya Quiroga, V., Kure, S., Udo, K., and Mano, A., 2016. Application of 2D numerical simulation for the analysis of the February 2014 Bolivian Amazonia flood: Application of the new HEC-RAS version 5. Revista Iberoamericana Del Agua (RIBAGUA), 3 (1): Pages 25-33. https://doi.org/ 10.1016/j.riba.2015.12.001.
Naeem, B., Azmat, M., Ahmad, S. H., Khattak, M. U, Haider, S., Ahmad, S., Khero, Z., and Goodell, Ch. R., 2021. Flood hazard assessment for the Tori Levee Breach of the Indus River Basin, Pakistan. Water, 13 (5): 19 p. https://doi.org/ 10.3390/w13050604.
Ongdas, N., Akiyanova, F., Karakulov, Y., Muratbayeva, A., and Zinabdin, N., 2020. Application of HEC-RAS (2D) for flood hazard maps generation for Yesil (Ishim) River in Kazakhstan. Water, 12 (10): 20 p.  https://doi.org/10.3390/w12102672.
Phogat, V., Skewes, M. A., Cox, J. W, and Simunek, J., 2016. Statistical assessment of a numerical model simulating agro hydro-chemical processes in soil under Drip Fertigated Mandarin Tree. Irrigat Drainage Sys Eng, 5: 155. 9 p. https://doi.org/10.4172/2168-9768.1000155.
Pinos, Juan., and Timbe, Luis., 2019. Performance assessment of two-dimensional hydraulic models for generation of flood inundation maps in mountain river basins. Water Science and Engineering, 12 (1): 11-18. https://doi.org/10.1016/j.wse.2019.03.001.
Plate, E. J., 2002. Flood risk and flood management. Journal of Hydrology, 267: 2–11. https://doi.org/10.1016/S0022-1694(02)00135-X.
Rangari, V. A, Umamahesh, N. V, and Bhatt, C. M., 2019. Assessment of inundation risk in urban foods using HEC RAS 2D. Modeling Earth Systems and Environment, Springer Nature Switzerland AG. 13 p. https://Doi.org/10.1007/s40808-019-00641-8.
Raposo, J. R, Molinero J, and Dafonte J., 2012. Parameterization and quantification of recharge in crystalline fractured be rocks in Galicia-Costa (NW Spain). Hydrol, Earth Syst. Sci. Discuss, 9: 1919–1960. https://doi.org/10.5194/hess-16-1667-2012.
Sahoo, S. N, and Sreeja, P., 2017. Sensitivity of imperviousness determination methodology on runoff prediction, ISH Journal of Hydraulic Engineering, Taylor and Francis, 23 (3): 276-282. https://doi.org/10.1177/ASWR.S36089.
Shahiri Parsa, A., Nori, M., Heydari, M., and Rashidi, M., 2016. Floodplain zoning simulation by using HEC-RAS and CCHE2D Models in the Sungai Maka River. Air, Soil and Water Research, 9: 55–62. https://doi.org/10.4137/ASWR.S3608.
Soler, C., Sentelhas, P., and Hoogenboom, G., 2007. Application CSMCERES maize model for planting date evaluation and yield forecasting for maize grown off season in a subtropical environment. Eur. J. Agron, 27:165-177. https://doi.org/10.1016/j.eja.2007.03.002.
Tabarak, W., Ali, N., and Ali, A.A., 2021. Development and classification of flood hazard map using 2D hydraulic model. IOP Conference Series: Materials Science and Engineering. 9 p. https://doi.org/10.1088/1757-899X/1090/1/012122.
Tellman, B.; Sullivan, J. A.; Kuhn, C.; Kettner, A. J; Doyle, C. S. Brakenridge, G. R., Erickson, T. A., and Slayback, D.A., 2021. Satellite imaging reveals increased proportion of population exposed to floods. Nature, 596: 80–86. https://doi.org/10.1038/s41586-021-03695-w.
Trinh, M. X., and Molkenthin, F., 2021. Flood hazard mapping for data‑scarce and ungauged coastal river basins using advanced hydrodynamic models, high temporal‑spatial resolution remote sensing precipitation data, and satellite imageries. Natural Hazards, 109:441–469. https://doi.org/10.1007/s11069-021-04843-1.
Viglione, A. and M. Rogger., 2015. Flood Processes and Hazards. Paron P, Baldassarre GD, (Editors). Hydro-Meteorological Hazards, Risks and Disasters, 289. https://doi.org/10.1016/ B978-0-12-394846-5.00001-1.
CAPTCHA Image