پهنه بندی و بررسی اثرات مورفولوژیکی سیلاب های رودخانه زرینه رود (از ساری قمیش تا سد نوروزلو)

نوع مقاله : پژوهشی

نویسندگان

1 دانشگاه تبریز

2 دانشگاه مراغه

چکیده

سیلاب ها از فراوان ترین و مخرب ترین بلایای طبیعی به شمار می روند. در این ارتباط پهنه-بندی دشت سیلابی و کاربرد آن در برنامه ریزی آمایش فضا، ازجمله اقدامات مهم غیرسازه ای در زمینه کاهش خسارات سیلاب محسوب می شود. این پژوهش سعی دارد به بررسی خطر وقوع سیل در دشت سیلابی رودخانه زرینه رود با استفاده از مدل هیدرودینامیکی HEC-RAS و سیستم اطلاعات جغرافیایی (GIS) بپردازد. همچنین، از توان رودخانه به‌عنوان شاخصی جهت بررسی اثرات مورفولوژیکی بالقوه سیلاب ها استفاده شده است. داده های پایه برای مدل HEC-RAS شامل داده های فضایی و داده های جریان رودخانه می باشند. مهم‌ترین داده های فضایی پژوهش از طریق تهیه DEM (با قدرت تفکیک 1 متر) و TIN از روی نقشه-های توپوگرافی مقیاس 1:2000 حاصل شد. متغیرهای جریان، از طریق تحلیل داده های ایستگاه های هیدرومتری موجود بر روی مجرای اصلی و انشعابات آن به دست آمد. به‌منظور پیش پردازش داده های فضایی و پس پردازش نتایج حاصل از مدل HEC-RAS از الحاقی HEC-GeoRAS استفاده گردید. جهت بررسی اثرات ژئومورفیکی سیلاب ها، مجرای رودخانه با توجه به دانه بندی مواد بستر و الگوی رودخانه به دو بازه تقسیم بندی شد. در بازه اول (از ابتدا تا شهر محمودآباد)، به دلیل کم عرض بودن دشت سیلابی، پهنه های سیل گیر محدود می باشند. در این بازه، توان رودخانه در طی سیلاب ها زیاد است؛ اما مقاومت مواد بستر و کناره ها، مانع عمده ای در خصوص فرسایش کناره و کف کنی رودخانه محسوب می-شوند. در بازه دوم (از محمودآباد تا بالادست سد نوروزلو)، عرض پهنه های سیل گیر افزایش می یابد. توان رودخانه، نسبت به بازه اول پایین تر است؛ اما به دلیل نوع رسوبات بستر مجرا (ماسه تا گراول) و فرسایش پذیری زیاد مواد کناره ها، تغییرات مورفولوژیکی مجرا نیز زیاد می باشد و سیلاب ها، منجر به فرسایش های شدید، مهاجرت مئاندرها، ایجاد میان بُرها و همچنین نهشته گذاری به صورت پشته های نقطه ای در داخل و کناره های مجرا می شوند. نتایج، همچنین نشان می دهد که سیلاب های با دوره های بازگشت مختلف، خطر چندانی برای سکونت گاه های شهری و روستایی ایجاد نمی کنند؛ اما می توانند خسارات زیادی به اراضی کشاورزی وارد سازند. با توجه به ژئومورفولوژی منطقه و عرض پهنه های سیل گیر، سیلاب با دوره بازگشت 25 ساله، می تواند مبنای برنامه ریزی های آمایش دشت سیلابی باشد.

کلیدواژه‌ها


دانشفراز، رسول و منازاده، مریم؛ 1391. مروری بر هیدرولیک جریان با سطوح آزاد با حل مسائل در برنامه Matlab. چاپ اول. مراغه: انتشارات دانشگاه مراغه.
رضوی، احمد؛ 1387. اصول تعیین حریم منابع آب. چاپ اول، تهران: انتشارات دانشگاه صنعت آب و برق.
غفاری، گلاله و امینی، عطااله؛ 1389. مدیریت دشت‌های سیلابی با استفاده از سیستم اطلاعات جغرافیایی (GIS) (مطالعه موردی رودخانه قزل اوزن). فصلنامه علمی- پژوهشی فضای جغرافیایی. شماره 32. صص 134-117.
قمی اویلی، فرشته؛ صادقیان، محمدصادق؛ جاوید، امیرحسین و میرباقری، سیداحمد؛ 1389. شبیه‌سازی پهنه‌بندی سیل با استفاده از مدل HEC-RAS. فصلنامه علوم و فنون منابع طبیعی. سال شماره 1. صص 115- 105.
ولیزاده کامران، خلیل؛ 1386. کاربرد GIS در پهنه بندی خطر سیلاب (مطالعه موردی: حوضه رود لیقوان). مجله فضای جغرافیایی. شماره 20. صص 169-153.
یمانی، مجتبی؛ تورانی، مریم و چزغه، سمیرا؛ 1391. تعیین پهنه‌های سیل‌گیر با استفاده از مدل HEC-RAS (مطالعه موردی: بالادست سد طالقان از پل گلینک تا پل وشته). مجله جغرافیا و مخاطرات محیطی. شماره 1.
صص 16-1.
Ashley, R., Garvin, S., Pasche, E., Vassilopoulos, A., & Zevenbergen, C. (2007). Advances in Urban Flood Management. London: Taylor & Francis Group.
Barker, D.M., Lawler, D.M., Knight, D.W., Morris, D.G., Davies, H.N., & Stewart, E.J. (2009). Longitudinal distributions of river flood power: The combined automated flood, elevation and stream power (CAFES) methodology. Earth Surface Processes and Landforms, 34(2), 280-290.
Bizzi, S., & Lerner, D.N. (2015). The use of stream power as an indicator of channel sensitivity to erosion and deposition processes. River Research and Applications, 31, 16-27.
Bizzi, S., Harrison, R.F., & Lerner, D.N. (2009). The growing hierarchical self-organizing map (GHSOM) for analysing multi-dimensional stream habitat datasets. Proceedings of 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation. Cairns, Australia, 734–740.
Cameron, T., & Ackerman, P.E. (2012). HEC-GeoRAS, GIS tools for support of HEC-RAS using ArcGIS®10. US Army Corps of Engineers, Hydrologic Engineering Center.
Committee on American River Flood Frequencies, National Research Council. (1999). Improving American river flood frequency analyses. : Washington, D.C. Academy Press.
Committee on Flood Control Alternatives in the American River Basin, National Research Council. (1995). Flood risk management and the American river basin: An evaluation. Washington, D.C.: National Academy Press.
Committee on Risk-Based Analysis for Flood Damage Reduction, Water Science and Technology Board, National Research Council. (2000). Risk analysis and uncertainty in flood damage reduction studies. Washington, D.C.: National Academy Press.
Gichamo, T.Z., Popescu, I., Jonoski, A., & Solomatine, D. (2012). River cross-section extraction from the ASTER global DEM for flood modeling. Environmental Modelling & Software, 31, 37-46.
HEC (Hydrologic Engineering Center). (2010). HEC-RAS river analysis system, hydraulic reference manual. U. S. Army Corps of Engineers.
Hyndman, D., & Hyndman, D. (2009). Natural hazards and disasters. Belmont, Australia : Brooks/Cole, Cengage Learning.
Knebl, M.R., Yang, Z.L., Hutchison, K., & Maidment, D.R. (2005). Regional scale flood modeling using NEXRAD rainfall, GIS, and HEC-HMS/RAS: A case study for the San Antonio river basin summer 2002 storm event. Journal of Environmental Management, 75, 325–336.
Machado, S.M., & Ahmad, S. (2007). Flood hazard assessment of Atrato River in Colombia. Water Resources management, 21(3), 591-609.
Merwade, V.M. (2004). Geospatial description of river channels in three dimensions. Doctoral dissertation, The University of Texas at Austin.
Montgomery, D.R., & Buffington, J.M. (1997). Channel reach morphology in mountain drainage basins. Geological Society of America Bulletin, 109(5), 596-611.
Natural Resources Conservation Service. (2008). Stream restoration design (National Engineering Handbook 654). United States Department Agriculture.
Onusluel Gul, G., Harmancıoglu, N., & Gul, A. (2010). A combined hydrologic and hydraulic modeling approach for testing efficiency of structural flood control measures. Natural Hazards, 54 (2), 245-260.
Patro, S., Chatterjee, C., Singh, R., & Singh Raghuwanshi, N. (2009). Hydrodynamic modelling of a large flood-prone river system in India with limited data. Hydrological Processes, 23, 2774-2791.
Proverbs, D.G., & Soetanto, R. (2004). Flood damaged property: A guide to repair. Oxford, UK : Blackwell Publishing.
Ramachandra Rao, A., & Hamed, K.H. (2000). Flood frequency analysis. CRC Press.
Sene, K. (2008). Flood warning, forecasting and emergency response. New York: Springer.
Song, S., Schmalz, B., & Fohrer, N. (2014). Simulation and comparison of stream power in-channel and on the floodplain in a German lowland area. Journal of Hydrology Hydromechanics, 62(2), 133–144.
Tate, E. (1999). Floodplain mapping using HEC-RAS and ArcView GIS. M.S.E thesis, The University of Texas at Austin.
The Federal Interagency Stream Restoration Working Group. (2001). Stream corridor restoration: principles, processes, and practices. Natinal Engineering Handbook, USDA-Natural Reources Conservation Service: USA
Valizadeh Kamran, K.H. (2007). Application of GIS in flood hazard zonation (Case study: Lighvan drainage basin). Journal of Geographical Space, 20, 153-169.
Wohl, E.E. (2000). Inland flood hazards: human, riparian, and aquatic communities. Cambridge: Cambridge University Press.
Yamani, M., Toorani, M., & Chezghe, S. (2012). Detemination of the flooding zones by using HEC-RAS model (Case study: upstream the Taleghan dam). Journal of Geography and Environmental Hazards, 1, 1-16.
Yang, J., Townsend, R.D., & Daneshfar, B. (2006). Applying the HEC-RAS model and GIS techniques in river network floodplain delineation. Canadian Journal of Civil Engineering, 33(1), 19-28.
CAPTCHA Image