Abbas, A., Ekowati, D., Suhariadi, F., & Fenitra, R. M. (2023). Health implications, leaders societies, and climate change: a global review. Ecological footprints of climate change: Adaptive approaches and sustainability, 653-675. https://doi.org/10.1007/978-3-031-15501-7_26
Aguilera, R., Luo, N., Basu, R., Wu, J., Clemesha, R., Gershunov, A., & Benmarhnia, T. (2023). A novel ensemble-based statistical approach to estimate daily wildfire-specific PM2.5 in California (2006–2020). Environment International, 171, 107719. https://doi.org/10.1016/j.envint.2022.107719
Ahani, I. K., Salari, M., & Shadman, A. (2019). Statistical models for multi-step-ahead forecasting of fine particulate matter in urban areas. Atmospheric Pollution Research, 10(3), 689-700. https://doi.org/10.1016/j.apr.2018.11.006
Athira, V., Geetha, P., Vinayakumar, R., & Soman, K. P. (2018). DeepAirNet: Applying recurrent networks for air quality prediction. Procedia Computer Science, 132, 1394-1403. https://doi.org/10.1016/j.procs.2018.05.068
Ayus, I., Natarajan, N., & Gupta, D. (2023). Comparison of machine learning and deep learning techniques for the prediction of air pollution: a case study from China. Asian Journal of Atmospheric Environment, 17(1), 4. https://doi.org/10.1007/s44273-023-00005-w
Bai, L., Wang, J., Ma, X., & Lu, H. (2018). Air pollution forecasts: An overview. International Journal of Environmental Research and Public Health, 15(4), 780. https://doi.org/10.3390/ijerph15040780
Beckerman, B. S., Jerrett, M., Serre, M., Martin, R. V., Lee, S. J., Van Donkelaar, A., … & Burnett, R. T. (2013). A hybrid approach to estimating national scale spatiotemporal variability of PM2. 5 in the contiguous United States. Environmental Science & Technology, 47(13), 7233-7241. https://doi.org/10.1021/es400039u
Bell, M. L., Dominici, F., Ebisu, K., Zeger, S. L., & Samet, J. M. (2007). Spatial and temporal variation in PM2.5 chemical composition in the United States for health effects studies. Environmental Health Perspectives, 115(7), 989-995. https://doi.org/10.1289/ehp.962
Bono, R., Tassinari, R., Bellisario, V., Gilli, G., Pazzi, M., Pirro, V., ... & Piccioni, P. (2015). Urban air and tobacco smoke as conditions that increase the risk of oxidative stress and respiratory response in youth. Environmental Research, 137, 141-146. https://doi.org/10.1016/j.envres.2014.12.008
Chen, B., You, S., Ye, Y., Fu, Y., Ye, Z., Deng, J., … & Hong, Y. (2021). An interpretable self-adaptive deep neural network for estimating daily spatially-continuous PM2.5 concentrations across China. Science of The Total Environment, 768, 144724. https://doi.org/10.1016/j.scitotenv.2020.144724
Chen, L., Wu, Z., Tu, W., & Cao, Z. (2020). Applying LUR model to estimate spatial variation of PM2.5 in the Greater Bay Area, China. In Spatiotemporal Analysis of Air Pollution and Its Application in Public Health, 207-215. https://doi.org/10.1016/B978-0-12-815822-7.00010-8
Chen, X., Zhang, W., He, J., Zhang, L., Guo, H., Li, J., & Gu, X. (2024). Mapping PM2.5 concentration from the top-of-atmosphere reflectance of Himawari-8 via an ensemble stacking model. Atmospheric Environment, 120560. https://doi.org/10.1016/j.atmosenv.2024.120560
Chudnovsky, A., Tang, C., Lyapustin, A., Wang, Y., Schwartz, J., & Koutrakis, P. J. A. C. (2013). A critical assessment of high-resolution aerosol optical depth retrievals for fine particulate matter predictions. Atmospheric Chemistry and Physics, 13(21), 10907-10917. https://doi.org/10.5194/acp-13-10907-2013
Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555. https://doi.org/10.48550/arXiv.1412.3555
Cortina–Januchs, M. G., Quintanilla–Dominguez, J., Vega–Corona, A., & Andina, D. (2015). Development of a model for forecasting of PM10 concentrations in Salamanca, Mexico. Atmospheric Pollution Research, 6(4), 626-634. https://doi.org/10.5094/APR.2015.071
Das Chagas Moura, M., Zio, E., Lins, I. D., & Droguett, E. (2011). Failure and reliability prediction by support vector machines regression of time series data. Reliability Engineering & System Safety, 96(11), 1527-1534. https://doi.org/10.1016/j.ress.2011.06.006
De Hoogh, K., Gulliver, J., van Donkelaar, A., Martin, R. V., Marshall, J. D., Bechle, M. J., ... & Hoek, G. (2016). Development of West-European PM2.5 and NO2 land use regression models incorporating satellite-derived and chemical transport modelling data. Environmental Research, 151, 1-10. https://doi.org/10.1016/j.envres.2016.07.005
Enebish, T., Chau, K., Jadamba, B., & Franklin, M. (2021). Predicting ambient PM2.5 concentrations in Ulaanbaatar, Mongolia with machine learning approaches. Journal of Exposure Science & Environmental Epidemiology, 31(4), 699-708. https://doi.org/10.1038/s41370-020-0257-8
Feng, L., Li, Y., Wang, Y., & Du, Q. (2020). Estimating hourly and continuous ground-level PM2.5 concentrations using an ensemble learning algorithm: The ST-stacking model. Atmospheric Environment, 223, 117242. https://doi.org/10.1016/j.atmosenv.2019.117242
Fotheringham, A. S., Charlton, M. E., & Brunsdon, C. (1998). Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. Environment and planning A, 30(11), 1905-1927. https://doi.org/10.1068/a301905
Geng, G., Zhang, Q., Martin, R. V., Van Donkelaar, A., Hong, H., Che, H., … & He, K. (2015). Estimating long-term PM2.5 concentrations in China using satellite-based aerosol optical depth and a chemical transport model. Remote Sensing of Environment, 166, 262–270. https://doi.org/10.1016/j.rse.2015.05.016
Ghaemi, Z., Farnaghi, M., & Alimohammadi, A. (2016). An Online Approach for Spatio-Temporal Prediction of Air Pollution in Tehran using Support Vector Machine. Engineering Journal of Geospatial Information Technology, 3(4), 43-63.[In Persian] http://jgit.kntu.ac.ir/article-1-305-en.html
Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2016). LSTM: A search space odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2222-2232. https://doi.org/10.1109/TNNLS.2016.2582924
Gulliver, J., Morley, D., Dunster, C., McCrea, A., van Nunen, E., Tsai, M. Y., ... & Kelly, F. J. (2018). Land use regression models for the oxidative potential of fine particles (PM2.5) in five European areas. Environmental Research, 160, 247-255. https://doi.org/10.1016/j.envres.2017.10.002
Guo, Y., Tang, Q., Gong, D. Y., & Zhang, Z. (2017). Estimating ground-level PM2.5 concentrations in Beijing using a satellite-based geographically and temporally weighted regression model. Remote Sensing of Environment, 198, 140-149. https://doi.org/10.1016/j.rse.2017.06.001
Han, W., & Tong, L. (2019). Satellite-based estimation of daily ground-level PM2.5 concentrations over urban agglomeration of Chengdu Plain. Atmosphere, 10(5), 245. https://doi.org/10.3390/atmos10050245
Han, Z., Zhao, J., Leung, H., Ma, K. F., & Wang, W. (2019). A review of deep learning models for time series prediction. IEEE Sensors Journal, 21(6), 7833-7848. https://doi.org/10.1109/JSEN.2019.2923982
He, Q., & Huang, B. (2018). Satellite-based high-resolution PM2.5 estimation over the Beijing-Tianjin-Hebei region of China using an improved geographically and temporally weighted regression model. Environmental Pollution, 236, 1027-1037. https://doi.org/10.1016/j.envpol.2018.01.053
Hsu, N. C., Tsay, S. C., King, M. D., & Herman, J. R. (2004). Aerosol properties over bright-reflecting source regions. IEEE Transactions on Geoscience and Remote Sensing, 42(3), 557-569. https://doi.org/10.1109/tgrs.2004.824067
Hu, X., Waller, L. A., Al‐Hamdan, M. Z., Crosson, W. L., Estes Jr, M. G., Estes, S. M., … & Liu, Y. (2013). Estimating ground-level PM2.5 concentrations in the southeastern U.S. using geographically weighted regression. Environmental Research, 121, 1–10. https://doi.org/10.1016/j.envres.2012.11.003
Hu, Z., Liebens, J., & Rao, K. R. (2011). Merging satellite measurement with ground-based air quality monitoring data to assess health effects of fine particulate matter pollution. In Geospatial Analysis of Environmental Health (pp. 395-409). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-0329-2_20
Huang, K., Bi, J., Meng, X., Geng, G., Lyapustin, A., Lane, K. J., … & Liu, Y. (2019). Estimating daily PM2.5 concentrations in New York City at the neighborhood-scale: Implications for integrating non-regulatory measurements. Science of the Total Environment, 697, 134094. https://doi.org/10.1016/j.scitotenv.2019.134094
Izah, S. C., Iyiola, A. O., Yarkwan, B., & Richard, G. (2023). Impact of air quality as a component of climate change on biodiversity-based ecosystem services. In Visualization techniques for climate change with machine learning and artificial intelligence, 123-148. https://doi.org/10.1016/B978-0-323-99714-0.00005-4
Jia, N., Li, Y., Chen, R., & Yang, H. (2023). A review of global PM2.5 exposure research trends from 1992 to 2022. Sustainability, 15(13), 10509. https://doi.org/10.3390/su151310509
Jiang, T., Chen, B., Nie, Z., Ren, Z., Xu, B., & Tang, S. (2021). Estimation of hourly full-coverage PM2.5 concentrations at 1-km resolution in China using a two-stage random forest model. Atmospheric Research, 248, 105146. https://doi.org/10.1016/j.atmosres.2020.105146
Karimian, H., Li, Q., Wu, C., Qi, Y., Mo, Y., Chen, G., ... & Sachdeva, S. (2019). Evaluation of different machine learning approaches to forecasting PM2.5 mass concentrations. Aerosol and Air Quality Research, 19(6), 1400-1410. https://doi.org/10.4209/aaqr.2018.12.0450
Kaufman, Y. J., Wald, A. E., Remer, L. A., Gao, B. C., Li, R. R., & Flynn, L. (1997). The MODIS 2.1-/spl mu/m channel-correlation with visible reflectance for use in remote sensing of aerosol. IEEE transactions on Geoscience and Remote Sensing, 35(5), 1286-1298. https://doi.org/10.1109/36.628795
Kelly, F. J., & Fussell, J. C. (2012). Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmospheric Environment, 60, 504-526. https://doi.org/10.1016/j.atmosenv.2012.06.039
Koelemeijer, R. B. A., Homan, C. D., & Matthijsen, J. (2006). Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe. Atmospheric Environment, 40(27), 5304-5315. https://doi.org/10.1016/j.atmosenv.2006.04.044
Kong, L., Xin, J., Zhang, W., & Wang, Y. (2016). The empirical correlations between PM2.5, PM10 and AOD in the Beijing metropolitan region and the PM2.5, PM10 distributions retrieved by MODIS. Environmental Pollution, 216, 350-360. https://doi.org/10.1016/j.envpol.2016.05.085
Kuremoto, T., Kimura, S., Kobayashi, K., & Obayashi, M. (2014). Time series forecasting using a deep belief network with restricted Boltzmann machines. Neurocomputing, 137, 47-56. https://doi.org/10.1016/j.neucom.2013.03.047
Lai, X., Li, H., & Pan, Y. (2021). A combined model based on feature selection and support vector machine for PM2. 5 prediction. Journal of Intelligent & Fuzzy Systems, 40(5), 10099-10113. https://doi.org/10.3233/JIFS-202812
Lee, H. J., Coull, B. A., Bell, M. L., & Koutrakis, P. (2012). Use of satellite-based aerosol optical depth and spatial clustering to predict ambient PM2.5 concentrations. Environmental Research, 118, 8-15. https://doi.org/10.1016/j.envres.2012.06.011
Lee, H. J., Liu, Y., Coull, B. A., Schwartz, J., & Koutrakis, P. (2011). A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations. Atmospheric Chemistry and Physics, 11(15), 7991-8002. https://doi.org/10.5194/acp-11-7991-2011
Lee, J. H., Wu, C. F., Hoek, G., de Hoogh, K., Beelen, R., Brunekreef, B., & Chan, C. C. (2015). LUR models for particulate matters in the Taipei metropolis with high densities of roads and strong activities of industry, commerce and construction. Science of the Total Environment, 514, 178-184. https://doi.org/10.1016/j.scitotenv.2015.01.091
Li, H., Yu, Y., Huang, Z., Sun, S., & Jia, X. (2023). A multi-step ahead point-interval forecasting system for hourly PM2.5 concentrations based on multivariate decomposition and kernel density estimation. Expert Systems with Applications, 226, 120140. https://doi.org/10.1016/j.eswa.2023.120140
Li, L., Zhang, J., Meng, X., Fang, Y., Ge, Y., Wang, J., ... & Kan, H. (2018a). Estimation of PM2.5 concentrations at a high spatiotemporal resolution using constrained mixed-effect bagging models with MAIAC aerosol optical depth. Remote Sensing of Environment, 217, 573-586. https://doi.org/10.1016/j.rse.2018.09.001
Li, X., Peng, L., Hu, Y., Shao, J., & Chi, T. (2016). Deep learning architecture for air quality predictions. Environmental Science and Pollution Research, 23, 22408-22417. https://doi.org/10.1007/s11356-016-7812-9
Li, X., Peng, L., Yao, X., Cui, S., Hu, Y., You, C., & Chi, T. (2017). Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation. Environmental Pollution, 231, 997-1004. https://doi.org/10.1016/j.envpol.2017.08.114
Liu, J., Weng, F., Li, Z., & Cribb, M. C. (2019). Hourly PM2.5 estimates from a geostationary satellite based on an ensemble learning algorithm and their spatiotemporal patterns over central east China. Remote Sensing, 11(18), 2120. https://doi.org/10.3390/rs11182120
Liu, Y., Franklin, M., Kahn, R., & Koutrakis, P. (2007). Using aerosol optical thickness to predict ground-level PM2.5 concentrations in the St. Louis area: A comparison between MISR and MODIS. Remote Sensing of Environment, 107(1-2), 33-44. https://doi.org/10.1016/j.rse.2006.05.022
Liu, Y., Paciorek, C. J., & Koutrakis, P. (2009). Estimating regional spatial and temporal variability of PM2.5 concentrations using satellite data, meteorology, and land use information. Environmental Health Perspectives, 117(6), 886-892. https://doi.org/10.1289/ehp.0800123
Liu, Y., Sarnat, J. A., Kilaru, V., Jacob, D. J., & Koutrakis, P. (2005). Estimating ground-level PM2. 5 in the eastern United States using satellite remote sensing. Environmental Science & Technology, 39(9), 3269-3278. https://doi.org/10.1021/es049352m
Lu, J., Li, B., Li, H., & Al-Barakani, A. (2021). Expansion of city scale, traffic modes, traffic congestion, and air pollution. Cities, 108, 102974. https://doi.org/10.1016/j.cities.2020.102974
Lv, Y., Duan, Y., Kang, W., Li, Z., & Wang, F. Y. (2014). Traffic flow prediction with big data: A deep learning approach. IEEE Transactions on Intelligent Transportation Systems, 16(2), 865-873. https://doi.org/10.1109/TITS.2014.2345663
Mao, L., Qiu, Y., Kusano, C., & Xu, X. (2012). Predicting regional space–time variation of PM2.5 with land-use regression model and MODIS data. Environmental Science and Pollution Research, 19, 128-138. https://doi.org/10.1007/s11356-011-0546-9
Masroor, K., Fanaei, F., Yousefi, S., Raeesi, M., Abbaslou, H., Shahsavani, A., & Hadei, M. (2020). Spatial modelling of PM2.5 concentrations in Tehran using Kriging and inverse distance weighting (IDW) methods. Journal of Air Pollution and Health, 5(2), 89-96. https://doi.org/10.18502/japh.v5i2.4237
Mellit, A., & Pavan, A. M. (2010). A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy. Solar Energy, 84(5), 807-821. https://doi.org/10.1016/j.solener.2010.02.006
Meng, X., Fu, Q., Ma, Z., Chen, L., Zou, B., Zhang, Y., … & Liu, Y. (2016). Estimating ground-level PM10 in a Chinese city by combining satellite data, meteorological information and a land use regression model. Environmental Pollution, 208, 177-184. https://doi.org/10.1016/j.envpol.2015.09.042
Meyer, H., Kühnlein, M., Appelhans, T., & Nauss, T. (2016). Comparison of four machine learning algorithms for their applicability in satellite-based optical rainfall retrievals. Atmospheric Research, 169, 424-433. https://doi.org/10.1016/j.atmosres.2015.09.021
Miri, M., Ghassoun, Y., Dovlatabadi, A., Ebrahimnejad, A., & Löwner, M. O. (2019). Estimate annual and seasonal PM1, PM2.5 and PM10 concentrations using land use regression model. Ecotoxicology and Environmental Safety, 174, 137-145. https://doi.org/10.1016/j.ecoenv.2019.02.070
Mishra, D., & Goyal, P. (2015). Development of artificial intelligence based NO2 forecasting models at Taj Mahal, Agra. Atmospheric Pollution Research, 6(1), 99-106. https://doi.org/10.5094/APR.2015.012
Mohammadi, F., Teiri, H., Hajizadeh, Y., Abdolahnejad, A., & Ebrahimi, A. (2024). Prediction of atmospheric PM2.5 level by machine learning techniques in Isfahan, Iran. Scientific Reports, 14(1), 2109. https://doi.org/10.1038/s41598-024-52617-z
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group, T. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of Internal Medicine, 151(4), 264-269. https://doi.org/10.7326/0003-4819-151-4-200908180-00135
Moore, D. K., Jerrett, M., Mack, W. J., & Künzli, N. (2007). A land use regression model for predicting ambient fine particulate matter across Los Angeles, CA. Journal of Environmental Monitoring, 9(3), 246-252. https://doi.org/10.1039/B615795E
Moryani, H. T., Kong, S., Du, J., & Bao, J. (2020). Health risk assessment of heavy metals accumulated on PM2.5 fractioned road dust from two cities of Pakistan. International Journal of Environmental Research and Public Health, 17(19), 7124. https://doi.org/10.3390/ijerph17197124
Nabavi, S. O., Haimberger, L., & Abbasi, E. (2019). Assessing PM2.5 concentrations in Tehran, Iran, from space using MAIAC, deep blue, and dark target AOD and machine learning algorithms. Atmospheric Pollution Research, 10(3), 889-903. https://doi.org/10.1016/j.apr.2018.12.017
Obodoeze, F. C., Nwabueze, C. A., & Akaneme, S. A. (2021). Comparative Evaluation of Machine Learning Regression Algorithms for PM2.5 Monitoring. American Journal of Engineering Research, 10(12), 19-33.
Ong, B. T., Sugiura, K., & Zettsu, K. (2016). Dynamically pre-trained deep recurrent neural networks using environmental monitoring data for predicting PM2.5. Neural Computing and Applications, 27, 1553-1566. https://doi.org/10.1007/s00521-015-1955-3
Osimobi, O. J., Yorkor, B., & Nwankwo, C. A. (2019). Evaluation of daily pollutant standard index and air quality index in a university campus in Nigeria using PM10 and PM2.5 particulate matter. Journal of Science, Technology and Environment Informatics, 7(2), 517-532. https://doi.org/10.18801/jstei.070219.54
Paciorek, C. J., Liu, Y., Moreno-Macias, H., & Kondragunta, S. (2008). Spatiotemporal associations between GOES aerosol optical depth retrievals and ground-level PM2.5. Environmental science & technology, 42(15), 5800-5806. https://doi.org/10.1021/es703181j
Perrone, M. G., Gualtieri, M., Consonni, V., Ferrero, L., Sangiorgi, G., Longhin, E., ... & Camatini, M. (2013). Particle size, chemical composition, seasons of the year and urban, rural or remote site origins as determinants of biological effects of particulate matter on pulmonary cells. Environmental Pollution, 176, 215-227. https://doi.org/10.1016/j.envpol.2013.01.012
Qi, Y., Li, Q., Karimian, H., & Liu, D. (2019). A hybrid model for spatiotemporal forecasting of PM2.5 based on graph convolutional neural network and long short-term memory. Science of the Total Environment, 664, 1-10. https://doi.org/10.1016/j.scitotenv.2019.01.333
Quan, T., Liu, X., & Liu, Q. (2010). Weighted least squares support vector machine local region method for nonlinear time series prediction. Applied Soft Computing, 10(2), 562-566. https://doi.org/10.1016/j.asoc.2009.08.025
Reddy, V., Yedavalli, P., Mohanty, S., & Nakhat, U. (2018). Deep air: forecasting air pollution in Beijing, China. Environmental Science, 1564.
Ren, Y., Zhang, Y., & Fan, S. (2024). PM2.5 Inversion Based on XGBoost And LightGBM Integrated Models. Proceedings of the 4th International Conference on Environment Resources and Energy Engineering (ICEREE 2024). https://doi.org/10.1051/e3sconf/202452002023
Ross, Z., Jerrett, M., Ito, K., Tempalski, B., & Thurston, G. D. (2007). A land use regression for predicting fine particulate matter concentrations in the New York City region. Atmospheric Environment, 41(11), 2255-2269. https://doi.org/10.1016/j.atmosenv.2006.11.012
Saeed, S., Hussain, L., Awan, I. A., & Idris, A. (2017). Comparative analysis of different statistical methods for prediction of PM2.5 and PM10 concentrations in advance for several hours. IJCSNS International Journal of Computer Science and Network Security, 17(11), 45-52. http://ijcsns.org/07_book/html/201711/201711006.html
Sapankevych, N. I., & Sankar, R. (2009). Time series prediction using support vector machines: a survey. IEEE Computational Intelligence Magazine, 4(2), 24-38. https://doi.org/10.1109/MCI.2009.932254
Shi, Y., Ho, H. C., Xu, Y., & Ng, E. (2018). Improving satellite aerosol optical depth-PM2.5 correlations using land use regression with microscale geographic predictors in a high-density urban context. Atmospheric Environment, 190, 23-34. https://doi.org/10.1016/j.atmosenv.2018.07.021
Shogrkhodaei, S. Z., Razavi-Termeh, S. V., & Fathnia, A. (2021). Spatio-temporal modeling of PM2.5 risk mapping using three machine learning algorithms. Environmental Pollution, 289, 117859. https://doi.org/10.1016/j.envpol.2021.117859
Song, Y., Qin, S., Qu, J., & Liu, F. (2015). The forecasting research of early warning systems for atmospheric pollutants: A case in Yangtze River Delta region. Atmospheric Environment, 118, 58-69. https://doi.org/10.1016/j.atmosenv.2015.06.032
Stern, R., Builtjes, P. J. H., Schaap, M., Timmermans, R., Vautard, R., Hodzic, A., … & Kerschbaumer, A. (2008). A model inter-comparison study focussing on episodes with elevated PM10 concentrations. Atmospheric Environment, 42(19), 4567–4588. https://doi.org/10.1016/j.atmosenv.2008.01.068
Su, J. G., Jerrett, M., Beckerman, B., Wilhelm, M., Ghosh, J. K., & Ritz, B. (2009). Predicting traffic-related air pollution in Los Angeles using a distance decay regression selection strategy. Environmental Research, 109(6), 657-670. https://doi.org/10.1016/j.envres.2009.06.001
Taheri Shahraiyni, H., & Sodoudi, S. (2016). Statistical modeling approaches for PM10 prediction in urban areas; A review of 21st-century studies. Atmosphere, 7(2), 15. https://doi.org/10.3390/atmos7020015
Van Donkelaar, A., Martin, R. V., Brauer, M., Kahn, R., Levy, R., Verduzco, C., & Villeneuve, P. J. (2010). Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application. Environmental Health Perspectives, 118(6), 847-855. https://doi.org/10.1289/ehp.0901623
Vapnik, V. (2013). The nature of statistical learning theory. Springer science & business media. New York: Springer.
Vicedo-Cabrera, A. M., Biggeri, A., Grisotto, L., Barbone, F., & Catelan, D. (2013). A Bayesian kriging model for estimating residential exposure to air pollution of children living in a high-risk area in Italy. Geospatial Health, 8(1), 87-95. https://doi.org/10.4081/gh.2013.57
Wang, J., & Christopher, S. A. (2003). Intercomparison between satellite‐derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies. Geophysical Research Letters, 30(21). https://doi.org/10.1029/2003GL018174
Wang, L., Zeng, Y., & Chen, T. (2015). Back propagation neural network with adaptive differential evolution algorithm for time series forecasting. Expert Systems with Applications, 42(2), 855-863. https://doi.org/10.1016/j.eswa.2014.08.018
West, J. J., Cohen, A., Dentener, F., Brunekreef, B., Zhu, T., Armstrong, B., ... & Wiedinmyer, C. (2016). What we breathe impacts our health: improving understanding of the link between air pollution and health. Environmental Science & Technology, 50(10), 4895–4904. https://doi.org/10.1021/acs.est.5b03827
Wu, C. D., Chen, Y. C., Pan, W. C., Zeng, Y. T., Chen, M. J., Guo, Y. L., & Lung, S. C. C. (2017). Land-use regression with long-term satellite-based greenness index and culture-specific sources to model PM2.5 spatial-temporal variability. Environmental Pollution, 224, 148-157. https://doi.org/10.1016/j.envpol.2017.01.074
Xiao, Q., Wang, Y., Chang, H. H., Meng, X., Geng, G., Lyapustin, A., & Liu, Y. (2017). Full-coverage high-resolution daily PM2. 5 estimation using MAIAC AOD in the Yangtze River Delta of China. Remote Sensing of Environment, 199, 437-446. https://doi.org/10.1016/j.rse.2017.07.023
Xu, Q., Chen, X., Yang, S., Tang, L., & Dong, J. (2021). Spatiotemporal relationship between Himawari-8 hourly columnar aerosol optical depth (AOD) and ground-level PM2.5 mass concentration in mainland China. Science of the Total Environment, 765, 144241. https://doi.org/10.1016/j.scitotenv.2020.144241
Xu, Y., Ho, H. C., Wong, M. S., Deng, C., Shi, Y., Chan, T. C., & Knudby, A. (2018). Evaluation of machine learning techniques with multiple remote sensing datasets in estimating monthly concentrations of ground-level PM2.5. Environmental Pollution, 242, 1417-1426. https://doi.org/10.1016/j.envpol.2018.08.029
Xue, Q., Tian, Y., Liu, X., Wang, X., Huang, B., Zhu, H., & Feng, Y. (2022). Potential risks of PM2.5-bound polycyclic aromatic hydrocarbons and heavy metals from inland and marine directions for a marine background site in North China. Toxics, 10(1), 32. https://doi.org/10.3390/toxics10010032
Xue, W., Zhang, J., Zhong, C., Ji, D., & Huang, W. (2020). Satellite-derived spatiotemporal PM2.5 concentrations and variations from 2006 to 2017 in China. Science of the Total Environment, 712, 134577. https://doi.org/10.1016/j.scitotenv.2019.134577
Yamins, D. L., & DiCarlo, J. J. (2016). Using goal-driven deep learning models to understand sensory cortex. Nature Neuroscience, 19(3), 356-365. https://doi.org/10.1038/nn.4244
Yan, X., Zang, Z., Luo, N., Jiang, Y., & Li, Z. (2020). New interpretable deep learning model to monitor real-time PM2.5 concentrations from satellite data. Environment International, 144, 106060. https://doi.org/10.1016/j.envint.2020.106060
Yang, Q., Yuan, Q., Yue, L., Li, T., Shen, H., & Zhang, L. (2019). The relationships between PM2.5 and aerosol optical depth (AOD) in mainland China: About and behind the spatio-temporal variations. Environmental Pollution, 248, 526-535. https://doi.org/10.1016/j.envpol.2019.02.071
Yang, Y., Wang, Z., Cao, C., Xu, M., Yang, X., Wang, K., ... & Shi, Z. (2024). Estimation of PM2.5 Concentration across China Based on Multi-Source Remote Sensing Data and Machine Learning Methods. Remote Sensing, 16(3), 467. https://doi.org/10.3390/rs16030467
Yi, L., Mengfan, T., Kun, Y., Yu, Z., Xiaolu, Z., Miao, Z., & Yan, S. (2019). Research on PM2.5 estimation and prediction method and changing characteristics analysis under long temporal and large spatial scale-A case study in China typical regions. Science of the Total Environment, 696, 133983. https://doi.org/10.1016/j.scitotenv.2019.133983
Zamani Joharestani, M., Cao, C., Ni, X., Bashir, B., & Talebiesfandarani, S. (2019). PM2.5 prediction based on random forest, XGBoost, and deep learning using multisource remote sensing data. Atmosphere, 10(7), 373. https://doi.org/10.3390/atmos10070373
Zhang, J., Zheng, Y., & Qi, D. (2017). Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction. Proceedings of the AAAI Conference on Artificial Intelligence, 31(1). https://doi.org/10.1609/aaai.v31i1.10735
Zhang, T., He, W., Zheng, H., Cui, Y., Song, H., & Fu, S. (2021). Satellite-based ground PM2.5 estimation using a gradient boosting decision tree. Chemosphere, 268, 128801. https://doi.org/10.1016/j.chemosphere.2020.128801
Zhang, X., Chu, Y., Wang, Y., & Zhang, K. (2018). Predicting daily PM2.5 concentrations in Texas using high-resolution satellite aerosol optical depth. Science of the Total Environment, 631, 904-911. https://doi.org/10.1016/j.scitotenv.2018.02.255
Zhou, Y., Chang, F. J., Chang, L. C., Kao, I. F., Wang, Y. S., & Kang, C. C. (2019). Multi-output support vector machine for regional multi-step-ahead PM2.5 forecasting. Science of the Total Environment, 651, 230-240. https://doi.org/10.1016/j.scitotenv.2018.09.111
Zou, B., Fang, X., Feng, H., & Zhou, X. (2021). Simplicity versus accuracy for estimation of the PM2.5 concentration: A comparison between LUR and GWR methods across time scales. Journal of Spatial Science, 66(2), 279-297. https://doi.org/10.1080/14498596.2019.1624203
Zuo, X., Guo, H., Shi, S., & Zhang, X. (2020). Comparison of six machine learning methods for estimating PM2.5 concentration using the Himawari-8 aerosol optical depth. Journal of the Indian Society of Remote Sensing, 48(9), 1277-1287. https://doi.org/10.1007/s12524-020-01154-z
ارسال نظر در مورد این مقاله