ارزیابی خطر سیلاب در حوضه آبریز اوجان‌چای با استفاده از منطق فازی و مدل هیدرولوژیکی HEC-HMS

نوع مقاله : مقاله پژوهشی

نویسنده

دانشیار اقلیم‌شناسی در برنامه‌ریزی محیطی، دانشگاه مراغه، مراغه، ایران

چکیده

در پژوهش حاضر خطر سیلاب در سطح حوضه اوجان­ چای، واقع در شهرستان بستان­ آباد استان آذربایجان شرقی، ارزیابی شد. برای تهیه نقشه خطر تعداد 16 متغیر مکانی تأثیرگذار بر وقوع سیلاب موردتوجه قرار گرفته و در بستر سیستم اطلاعات جغرافیایی با استفاده از منطق فازی ترکیب و تحلیل شدند. نتایج همپوشانی با کاربست اپراتور گامای فازی نشان داد بالغ بر 8/4 درصد از مساحت حوضه در کلاس با خطر بسیار زیاد قرار گرفته است. بخش قابل‌توجهی از این پهنه ­ها منطبق بر بستر رودخانه­ های اصلی حوضه و اراضی پیرامون آن‌هاست. کلاس با خطرپذیری زیاد نیز عمدتاً در مجاورت کلاس مذکور قرار گرفته و بالغ بر 6/16 درصد مساحت حوضه مطالعاتی را شامل می­ شود. این پهنه­ ها می ­توانند توسط سیلاب ­های با دوره بازگشت 10 سال و بالاتر تحت تأثیر قرار گیرند. حدود 2/3 درصد از مناطق مسکونی با مساحتی بالغ 1/11 هکتار در کلاس با خطرپذیری بسیار زیاد و حدود 9/42 درصد با مساحتی بالغ بر 9/35 هکتار در کلاس با خطرپذیری زیاد واقع شده ­اند. در بخش دوم تحقیق از مدل HEC-HMS به­ منظور شبیه ­سازی بارش- رواناب و شناسایی زیرحوضه­ های با پتانسیل تولید رواناب بالا استفاده شد. نتایج نشان داد هیدروگراف سیلاب زیرحوضه ­ها و خروجی حوضه تا حد زیادی تحت تأثیر ویژگی­ های ژئومورفومتری و پوشش زمین است. پیک­ های بالا در زیرحوضه­ های با کمترین میزان پوشش حفاظتی، شیب زیاد، نفوذپذیری کم، فراوانی برون­زدهای سنگی و سطوح غیرقابل نفوذ مشاهده می ­شود. می ­توان به زیرحوضه ­های بالادست ازجمله 1، 3، 7، 11 و 12 اشاره کرد که از بالاترین میزان دبی پیک برخوردارند.

کلیدواژه‌ها

موضوعات


©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

Ajin, R. S., Krishnamurthy, R. R, Jayaprakash, M., & Vinod, P. G. (2013). Flood Hazard Assessment of Vamanapuram River Basin, Kerala, India: An Approach Using Remote Sensing & GIS Techniques. Advances in Applied Science Research, 4(3), 263–274. https://www.scirp.org/reference/referencespapers?referenceid=2331182
Ali Mohammad,J.K., Aslam, I., & Khan, Z. (2011). Simulation of the Impacts of Landuse Change
on Surface Runoff of Lai Nullah Basin in Islamabad, Pakistan. Landscape and Urban
Planning, 102(4), 271–279. https://doi.org/10.1016/j.landurbplan.2011.05.006
Allafta, H., & Opp, C. (2021). GIS-Based Multi-Criteria Analysis for Flood Prone Areas Mapping
in the Trans-Boundary Shatt Al-Arab Basin, Iraq-Iran, Geomatics. Natural Hazards and Risk,
12(1), 2087-2116. https://doi.org/10.1080/19475705.2021.1955755
Centre for Research on the Epidemiology of Disasters, UN International Strategy for Disaster
Reduction (CRED, UNISDR) (2015). The Human Cost of Natural Disasters 2015: A Global
Perspective, Report available at https://reliefweb.int/report/world/human-cost-naturaldisasters-2015-global-perspective
Chen, Y., Liu, R.D., Barrett, D., Gao, L., Zhou, M., Renzullo, L., & Emelyanova, I. (2015). A
Spatial Assessment Framework for Evaluating Flood Risk under Extreme Climates. Science
of the Total Environment, 538, 512-523. https://doi.org/10.1016/j.scitotenv.2015.08.094
Dung, N.B., Long, N.Q., Tran, A.D., & Tuyet, M.D. (2021). Multi-Geospatial Flood Hazard
Modelling for a Large and Complex River Basin with Data Sparsity: A Case Study of the
Lam River Basin, Vietnam. Earth Systems and Environment, 6 (20), 715-731.
https://doi.org/10.1007/s41748-021-00215-8
Dung NB, Tuyet MD, Ahmad A, Long NQ. (2020). The Role Of Relative Slope Length In Flood
Hazard Mapping Using Ahp And Gis (Case Study: Lam River Basin, Vietnam). Geography,
Environment, Sustainability, 13(2): 118-126.https://doi.org/10.24057/2071-9388-2020-
48
Ganji, K., Gharechelou, S., & Ahmadi, A. (2022). Determining Effective Factors on Gorganrood
River Flooding and Micro-Zoning of Flood Risk Analysis in Aq’Qala County Using AHP
Method. Journal of Geography and Environmental Hazards, 10(4), 25-46. [In Persian]
https://doi.org/10.22067/geoeh.2021.68419.1011
Ghanavati, E., Karam, A., & Aghaalikhani, M. (2013). Flood Risk Zonation in the Farahzad Basin
(Tehran) Using Fuzzy Model. Geography and Environmental Planning, 23(4), 121-138. [In
Persian] https://dorl.net/dor/20.1001.1.20085362.1391.23.4.8.2
Hydrologic Engineering Center. (2013). HEC-GeoHMS, Geospatial Hydrologic Modeling
Extension. US Army Corps of Engineers.
Hydrologic Engineering Center. (2016). Hydrologic Modeling System HEC-HMS. US Army
Corps of Engineers.
Iwahashi, J., Pike, R.J. (2007). Automated Classifications of Topography from DEMs by an
Unsupervised Nested-Means Algorithm and a Three-Part Geometric Signature.
Geomorphology, 86(3-4), 409–440. https://doi.org/10.1016/j.geomorph.2006.09.012
Jahanbakhsh Asl, S., Asad, M., & Akbari, E. (2016). The Potential Evaluation of Wind Power
Plants by Using the Fuzzy- AHP Methods in GIS (Case Study: North East of IRAN).
90 نشر ی ه جغراف ی ا و مخاطرات مح ی ط ی ، جلد 13 ،شماره 2 ،تابست ان 1403
Journal of Geography and Planning, 20(56), 55-72. [In Persian]
https://geoplanning.tabrizu.ac.ir/article_4981.html
Kourgialas, N.N., Karatzas, G.P. (2011). Flood Management and a GIS Modelling Method to
Assess Flood-Hazard Areas—A Case Study. Hydrological Sciences Journal, 56(2), 212-225.
https://doi.org/10.1080/02626667.2011.555836
Kumar, S., Gupta, S. (2016). Geospatial Approach in Mapping Soil Erodibility Using CartoDEM
– A Case Study in Hilly Watershed of Lower Himalayan Range. Journal of Earth System
Science, 125, 1463–1472. https://doi.org/10.1007/s12040-016-0738-2
Lee, S. (2007). Application and Verification of Fuzzy Algebraic Operators to Landslide
Susceptibility Mapping. Environmental Geology 52, 615–623.
https://doi.org/10.1007/s00254-006-0491-y
Liu, J.G., & Mason, P.J. (2009). Essential Image Processing and GIS for Remote Sensing. New
Jersey, John Wiley & Sons. https://doi.org/10.1002/9781118687963
Luca, F., Conforti, M., & Robustelli, G. (2011). Comparison of GIS-based Gullying Susceptibility
Mapping Using Bivariate and Multivariate Statistics: Northern Calabria, South Italy.
Geomorphology, 134(3-4), 297-308. https://doi.org/10.1016/j.geomorph.2011.07.006
Mazidi, A., & Kooshki, S. (2015). Simulation of Rainfall-Runoff Process and Estimate of Flood
with HEC-HMSModel in Khorramabad Catchment Area. Geography and Development,
13(41), 1-10. [In Persian] https://doi.org/10.22111/gdij.2015.2236
Mesri Alamdari, P. (2021). Spatial Analysis of Flood Hazard in Ajabshir Ghaleh Chay Catchment
using GIS and HEC-HMS Model. Quantitative Geomorphological Research, 10(1), 93-111.
[In Persian] https://www.geomorphologyjournal.ir/article_134562.html
Modaresi, F. & Araghinejad, Sh. (2017) Practical training of the hydrological modelling of the
watershed in HEC-HMS and HEC-GeoHMS, Noavar publication.
Moradnezhadi, M., Jourgholami, M., & Malekian, A. (2015). Evaluating the HEC-HMS
Hydrologic Model in Order to Simulating Flood Hydrograph in Forest Basin (Case Study:
Kheyrud Forest). Forest and Wood Products, 68(3), 625-639. [In Persian]
https://doi.org/10.22059/jfwp.2015.55594
Nandalal, H.K., Ratnayake, U.R. (2011). Flood Risk Analysis Using Fuzzy Models. Journal of
Flood Risk Management, 4, 128–139. https://doi.org/10.1111/j.1753-318X.2011.01097.x
Qin C.Z., Zhu, A.X., Pei, T., & Li B.L., Scholten, T., Behrens, T., & Zhou, C.H. (2011). An
Approach to Computing Topographic Wetness Index Based on Maximum Downslope
Gradient. Precision Agric 12, 32–43. https://doi.org/10.1007/s11119-009-9152-y
Rahimzadeh, Z., & Habibi, M. (2018). Simulation of Hydrograph of Flood with Hydrological
Model HEC-HMS and Prediction of Return Period in Kermanshah Ravansar Basin.
Geography and Development, 16(53), 175-194. [In persian]
https://doi.org/10.22111/gdij.2018.4186
Rashetnia, S. (2016). Flood Vulnerability Assessment by Applying a Fuzzy Logic Method: A
Case Study from Melbourne. Thesis Submitted in Fulfilment of the Requirements for the
Degree of Master of Engineering, College of Engineering and Science Victoria University,
Melbourne, Australia. https://api.semanticscholar.org/CorpusID:132844539
Sarvar, H., & Kherizadeh Arouq, M. (2015) Feasibility of optimal physical development of
Maragheh city using geographic information system (GIS). Research project, Maragheh
University.
سال سیزدهم اسمعیل پور، ارزیابی خطر سی الب در حوضه آبریز اوجان چای با استفاده از منطق فازی و مدل هی درولوژیک ی ... 91
Sistani Badooei, M., Negaresh, H., & Fotoohi, S. (2017). Zoning Flood Hazard in the
GabrikDrainage Basin. Journal of Geography and Environmental Hazards, 6(2), 163-182.
[In Persian] https://doi.org/10.22067/geo.v6i2.59833
Sui, Y., Lang, X., & Jiang, D. (2018). Projected Signals in Climate Extremes Over China
Associated with a 2°C Global Warming Under Two RCP Scenarios. International Journal of
Climatology, 38 (S1): 678–697. https://doi.org/10.1002/joc.5399
Tella, A., & Balogun, A.L. (2020). Ensemble Fuzzy MCDM for Spatial Assessment of Flood
Susceptibility in Ibadan, Nigeria. Nat Hazards, 104, 2277–2306.
https://doi.org/10.1007/s11069-020-04272-6
Toya, H., Skidmore, M. (2007). Economic Development and the Impacts of Natural Disasters.
Econ. Lett, 94 (1), 20–25. https://doi.org/10.1016/j.econlet.2006.06.020
Yariyan, P., Avand, M., Ali Abbaspour, R., Torabi Haghighi, A., Costache, R., Ghorbanzadeh,
O., Janizadeh, S., & Blaschke, T. (2020). Flood Susceptibility Mapping Using an Improved
Analytic Network Process with Statistical Models. Geomatics, Natural Hazards and Risk,
11(1), 2282-2314. https://doi.org/10.1080/19475705.2020.1836036
Yousefi, H., Golshan, M., & Pirnia, A. (2018). Performance of HEC-HMS Hydrological Model
in Simulation of Flood Hydrograph in Arid and Humid Watersheds. Iranian journal of
Ecohydrology, 5(1), 319-330. [In Persian] https://doi.org/ 10.22059/ije.2018.240802.715
Zare, M., Azari, M., & Rezaei Arefi, M. (2024). Comparison of different multi-criteria
decision-making methods for prioritization of flood source areas in Kashafrood
basin. Journal of Geography and Environmental Hazards, 13(4), -.
https://doi.org/10.22067/geoeh.2024.88777.1498
CAPTCHA Image