بررسی میزان جابجایی سطح زمین ناشی از زمین لرزه با استفاده از تداخل‌سنجی راداری (مطالعه موردی :استان ایلام، گسل پیشانی کوهستان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه یزد، یزد، ایران

2 دانشگاه یزد

3 دانشگاه صنعتی اصفهان

چکیده

یکی از مهمترین اثرات زمین‌لرزه‌ها، جابه­ جایی سطح زمین است که نقش عمده‌ای در ایجاد خسارات جانی و مالی ایفا می‌کند. شهرستان دهلران در بخش جنوبی استان ایلام یکی از مناطقی است که همواره تحت تأثیر زمین‌لرزه‌های کوچک و بزرگ قرار دارد. در این راستا، 10 تصویر راداری ماهواره Sentinel-1A قبل و بعد از زمین‌لرزه‌ها برای تحلیل میزان پایین‌رفتگی و بالا‌آمدگی در شهرها، سدها و مناطق اطراف استفاده شد. برای اعتبارسنجی نتایج جابه­ جایی سطح زمین، ارزیابی همدوسی پیکسل‌ها انجام شد که نشان‌دهنده دقت بالا در اندازه‌گیری‌های تداخل‌سنجی بود. نتایج نشان داد که نواحی شمالی شهرستان دهلران دچار پایین‌رفتگی شده و نواحی جنوبی بیشتر دچار بالا‌آمدگی گردیده‌اند. جابه­ جایی‌های ناشی از زمین‌لرزه‌های با بزرگای بالای 4 ریشتر در منطقه به‌صورت جابه­ جایی­ های سانتی‌متری ثبت گردید. این مطالعه نشان می‌دهد که حتی زمین‌لرزه‌های کوچک می‌توانند آسیب‌های جبران‌ناپذیری در این منطقه ایجاد کنند. یافته‌های این تحقیق می‌تواند برای شناسایی مناطق پرخطر و کم‌خطر به‌منظور کاهش خسارات در پروژه‌های شهرسازی، سدسازی و نفت و گاز مفید واقع گردد.

کلیدواژه‌ها


©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

Abdulmaleki, A., Maleki, A., & Khazaei, A. (2021). Monitoring of land elevation displacement and analyzing its geomorphological effects using remote sensing data. Journal of Remote Sensing and Geographic Information Systems in Natural Resources, 12(4), 118-95. [In Persian] https://doi.org/10.30495/girs.2021.681011
Atzori, S., Manunta, M., Fornaro, G., Ganas, S., & Salvi, S. (2008). Postseismic displacement of the 1999 Athens earthquake retrieved by the differential interferometry by synthetic aperture radar time series. Journal of Geophysical Research: Solid Earth, 113(B9), 1–14. https://doi.org/10.1029/2007JB005504
Auriac, A., Spaans, K. H., Sigmundsson, F., Hooper, A., Schmidt, P., & Lund, B. (2013). Iceland rising: Solid Earth response to ice retreat inferred from satellite radar interferometry and visocelastic modeling. Journal of Geophysical Research: Solid Earth, 118(4), 1331–1344. https://doi.org/10.1002/jgrb.50082
Baran, I., Stewart, M. P., Kampes, B. M., Perski, Z., & Lilly, P. (2003). A modification to the Goldstein radar interferogram filter. IEEE Transactions on Geoscience and Remote Sensing, 41(9), 2114–2118. https://doi.org/10.1109/TGRS.2003.817212
Basareh, M., Joudeki, M., Farzipoursain, A., & Safaei, H. (2013). Seismic survey and earthquake hazard analysis in the area of Dehloran County. Paper presented at the Proceedings of the Conference of the Iranian Society of Engineering and Environmental Geology, Ferdowsi University of Mashhad. [In Persian]
Burgmann, R., Rosen, P. A., & Fielding, E. J. (2000). Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Annual Review of Earth and Planetary Sciences, 28(1), 169–209. https://doi.org/10.1146/annurev.earth.28.1.169
Delong, S. B., Donnellan, A., Ponti, D. J., Rubin, R. S., Lienkaemper, J. J., Prentice, C. S., ... & Parker, J. W. (2016). Tearing the terroir: Details and implications of surface rupture and deformation from the 24 August 2014 M6. 0 South Napa earthquake, California. Earth and Space Science3(10), 416-430. https://doi.org/10.1002/2016EA000176
Hanssen, R. F. (2005). Satellite radar interferometry for deformation monitoring: a priori assessment of feasibility and accuracy. International Journal of Applied Earth Observation and Geoinformation, 6(3–4): 253–260. https://doi.org/10.1016/j.jag.2004.10.004
 
Ho Tong Minh, D., Hanssen, R., & Rocca, F. (2020). Radar interferometry: 20 years of development in time series techniques and future perspectives. Remote Sensing12(9), 1364. https://doi.org/10.3390/rs12091364
Joyce, K. E., Wright, K. C., Samsonov, S. V., & Ambrosia, V. G. (2009). Remote sensing and the disaster management cycle. Advances in Geoscience and Remote Sensing48(7), 317-346.
Maghsoudi, Y., & Mahdavi, S. (2016). Fundamentals of Radar Remote Sensing. Khajeh Nasiruddin Toosi University of Technology Publications. [In Persian]
Massonnet, D., & Feigl, K. L. (1998). Radar interferometry and its application to changes in the Earth's surface. Reviews of Geophysics36(4), 441-500. https://doi.org/10.1029/97RG03139
Mehrabi, A., & Pourkhosravani, M. (2018). Measuring the amount of ground surface displacement caused by the 1383 Dahuieh (Zarand) earthquake in Kerman province and identifying its causal fault using radar interferometry technique. Quantitative Geomorphology Research, 7(1), 61-73. [In Persian] https://dor.isc.ac/dor/20.1001.1.22519424.1397.7.1.5.9
Sansosti, E., Casu, F., Manzo, M., & Lanari, R. (2010). Space-borne radar interferometry techniques for the generation of deformation time series: An advanced tool for Earth's surface displacement analysis. Geophysical Research Letters, 37(20), 1–9. https://doi.org/10.1029/2010GL044379
Sarychikhina, O., Glowacka, E., Mellors, R., Vazquez, R., Munguia, L., & Guzman, M. (2009). Surface displacement and groundwater level changes associated with the 24 May 2006 Mw5.4 Morelia fault earthquake, Mexicali Valley, Baja California, Mexico. Bulletin of The Seismological Society of America, 99(4), 2180–2189. https://doi.org/10.1785/0120080228
Shami, S., Mashhadi Hosseinali. M., & Babaei, S. (2019). Analysis of large-scale displacements using radar interferometry technology in open-pit mines (case study: Golgohar mine, Sirjan). Journal of Surveying and Spatial Information Engineering, 10(3), 41-51. [In Persian] http://gej.issgeac.ir/article-1-329-fa.html
Zare Kamali, M., Al-Husseini Al-Madrassi, S. A., & Naghdi, K. (2017). Comparing the magnitude of the earth’s vertical relocation using the SBAS algorithm in X and C radar bands (Case study: Tehran lands). Journal of RS GIS for Natural Resources, 8(3), 104-120. [In Persian] http://dorl.net/dor/20.1001.1.26767082.1396.8.3.7.4
CAPTCHA Image