بررسی نقش لندفرم‌ها در میزان فرسایش خاک با مدل RUSLE و سامانه GEE ، مطالعه موردی: حوضه‌های دامنه جنوبی توده کوهستان سهند

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه جغرافیای طبیعی، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی، اردبیل،ایران

2 دانشجوی دکتری، گروه جغرافیای طبیعی، ژئومورفولوژی، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی، اردبیل، ایران

3 استاد، گروه جغرافیای طبیعی، گرایش ژئومورفولوژی، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

این پژوهش با هدف بررسی نقش لندفرم‌ها در میزان فرسایش خاک در حوضه‌های دامنه جنوبی توده کوهستان سهند انجام شد. با استفاده از مدل اصلاح‌شده جهانی فرسایش خاک (RUSLE) و سامانه گوگل ارث انجین (Google Earth Engine)، عوامل مؤثر بر فرسایش شامل فرسایندگی بارش (R)، فرسایش‌پذیری خاک (K)، طول و شدت شیب (LS)، مدیریت پوشش گیاهی (C) و عملیات حفاظتی خاک (P) مورد ارزیابی قرار گرفت و طبقه‌بندی لندفرم‌ها نیز در این سامانه انجام گرفت. نتایج تحقیق نشان داد که مناطق با فرسایش خیلی زیاد و زیاد با مساحتی حدود 45/0 درصد معادل 33/17 کیلومترمربع را شامل می‌شود. این مناطق در بالادست حوضه‌ که دارای ارتفاع بالا، میانگین بارندگی بیشتر و دارای پوشش گیاهی کمتری بوده رخ داده است. مناطق با فرسایش خیلی کم و کم مساحتی حدود 54/95 درصد معادل 11/3623 کیلومترمربع بوده است که در مناطق دارای پوشش گیاهی پر تراکم، بارندگی کم‌تر و در مناطق دشت‌ها و مسطح بوده است. علاوه بر این، تحلیل لندفرم‌های منطقه نشان داد که بیش‌ترین میزان فرسایش در لندفرم‌های آبراهه‌ها، پرتگاه‌ها و دره‌های باریک مشاهده می‌شود. در حالی‌که لندفرم‌های مسطح‌تر نظیر دشت‌ها و تراس‌های آبرفتی از فرسایش کمتری برخوردارند. استفاده از سامانه GEE در این پژوهش قابلیت بالای آن را در ترکیب و تحلیل داده‌های جغرافیایی مقیاس‌پذیر نشان داد و روشی مؤثر برای مدیریت پایدار اراضی و کاهش فرسایش خاک فراهم آورده شد. این یافته‌ها می‌توانند در برنامه‌ریزی‌های مدیریتی و اجرای عملیات حفاظتی در حوضه‌های آبخیز مشابه، توسط مسئولین و محققین مورد استفاده قرار گیرند.

کلیدواژه‌ها

موضوعات


©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

Abedini, M., & Sadeghi, A. (2024). Zoning of Erosion Intensity Using the RUSLE Model in the GEE System Case Study: Mardaghchay Basin, East Azerbaijan). Paper presented at the Proceedings of the 10th Conference of the Iranian Geomorphology Association, Tehran, Iran.
Abedini, M., Piroozi, E., & Faal Naziri, M. (2023). Investigating the Impacts of land use changes on soil erosion in Givi City using the MABAC multi-criteria decision-making model and Landsat satellite images (OLI-TM sensors). Journal of Geography and Environmental Hazards, 12(4), 1-26. [In Persian] https://doi.org/10.22067/geoeh.2022.73137.1121
Arekhi, S., & Barani, S. (2024). Comparison of EPM and RUSLE models in estimating erosion and sediment production using GIS (Case study: Chamgardalan watershed of Ilam province). Journal of Geography and Environmental Hazards, 13(2), 339-371. [In Persian] https://doi.org/10.22067/geoeh.2022.75260.1176
Cao, Z., Fang, Z., Yao, & Xiong, L. (2020). Loess Landform Classification Based on Random Forest. Journal of Geo-Information Science, 22(3), 452-463. http://dx.doi.org/10.12082/dqxxkx.2020.190247
Das, S., Bora, P. K., & Das, R. (2022). Estimation of slope length gradient (LS) factor for the sub-watershed areas of Juri River in Tripura. Modeling Earth Systems and Environment, 8(1), 1171–1177. https://doi.org/10.1007/s40808-021-01153-0
Diodato, N. (2004). Estimating RUSLE’s rainfall factor in the part of Italy with a Mediterranean rainfall regime. Hydrology and Earth System Sciences, 8(1), 103–107. https://doi.org/10.5194/hess-8-103-2004
Draguţ, L., & Eisank, C. (2011). Automated object-based classification of topography from SRTM data. Geomorphology, 141, 21–33. https://doi.org/10.1016/j.geomorph.2011.12.001
Du, L., You, X., Li, K., Meng, L., Cheng, G., Xiong, L., & Wang, G. (2019). Multi-modal deep learning for landform recognition. ISPRS Journal of Photogrammetry and Remote Sensing, 158, 63–75. https://doi.org/10.1016/j.isprsjprs.2019.09.018
Evans, I. S. (2012). Geomorphometry and landform mapping: What is a landform? Geomorphology, 137(1), 94–106. https://doi.org/10.1016/j.geomorph.2010.09.029
Florinsky, I., Eilers, R., Manning, G., & Fuller, L. (2002). Prediction of soil properties by digital terrain modelling. Environmental Modelling & Software, 17(3), 295–311. https://doi.org/10.1016/s1364-8152(01)00067-6
Gao, Y., Yang, J., Chen, X., Wang, X., Li, J., Azad, N., … & He, H. (2024). Using advanced INSAR techniques and machine learning in Google Earth Engine (GEE) to monitor Regional Black Soil Erosion—A Case study of Yanshou County, Heilongjiang Province, northeastern China. Remote Sensing, 16(20), 3842. https://doi.org/10.3390/rs16203842
Hoersch, B., Braun, G., & Schmidt, U. (2002). Relation between landform and vegetation in alpine regions of Wallis, Switzerland. A multiscale remote sensing and GIS approach. Computers Environment and Urban Systems, 26(2–3), 113–139. https://doi.org/10.1016/s0198-9715(01)00039-4
Hua, T., Zhao, W., Liu, Y., & Liu, Y. (2019). Influencing factors and their interactions of water erosion based on yearly and monthly scale analysis: A case study in the Yellow River basin of China. Nat. Hazards Earth. https://doi.org/10.5194/nhess-2019-122
Karami, F., & Bayati Khatibi, M. (2019). The Modeling of Soil Erosion and Prioritizing Sediment Production in Sattarkhan Dam Basin Using MUSLE and SWAT Models, Hydrogeomorphology, 6(18), 115-137. [In Persian] https://dor.isc.ac/dor/20.1001.1.23833254.1398.6.18.7.6
Karami, F., Mokhtari, D., & Ahmadi, F. (2023). The role of landforms and lithology in the rate of soil erosion in Zonuzchay catchment. Hydrogeomorphology, 10(37), 1–24. [In Persian] https://doi.org/10.22034/hyd.2023.53806.1660
Lee, E., Ahn, S., & Im, S. (2017). Estimation of soil erosion rate in the Democratic People’s Republic of Korea using the RUSLE model. Forest Science and Technology, 13(3), 100–108. https://doi.org/10.1080/21580103.2017.1341435
Li, S., Xiong, L., Tang, G., & Strobl, J. (2020). Deep learning-based approach for landform classification from integrated data sources of digital elevation model and imagery. Geomorphology, 354, 107045. https://doi.org/10.1016/j.geomorph.2020.107045
Mokarram, M., & Sathyamoorthy, D. (2018). A review of landform classification methods. Spatial Information Research, 26(6), 647–660. https://doi.org/10.1007/s41324-018-0209-8
Musa, J., Anijofor, S., Obasa, P., & Avwevuruvwe, J. (2017). Effects of soil physical properties on erodibility and infiltration parameters of selected areas in Gidan Kwano. Deleted Journal, 12(1), 46. https://doi.org/10.4314/njtr.v12i1.8
Nam, K., Lee, D., Chung, S., & Jeong, G. (2014). Effect of rainfall intensity, soil slope and geology on soil erosion. The Journal of Engineering Geology, 24(1), 69–79. https://doi.org/10.9720/kseg.2014.1.69
Negahban, S., & Mokarram, M. (2015). Landform Classification using Topography Position Index and relationship between it and characteristics of geology (Case Study: Hakan Watershed, Jahrom City). Environmental Erosion Research, 5(1), 75-89. [In Persian] https://dor.isc.ac/dor/20.1001.1.22517812.1394.5.1.5.1
Ozsahin, E., Duru, U., & Eroglu, I. (2018). Land Use and Land Cover Changes (LULCC), a key to understand soil erosion intensities in the Maritsa Basin. Water, 10(3), 335. https://doi.org/10.3390/w10030335
Panagos, P., Meusburger, K., Ballabio, C., Borrelli, P., & Alewell, C. (2014). Soil erodibility in Europe: A high-resolution dataset based on LUCAS. The Science of the Total Environment, 479, 189–200. https://doi.org/10.1016/j.scitotenv.2014.02.010
Parveen, R., & Kumar, U. (2012). Integrated Approach of Universal Soil Loss Equation (USLE) and Geographical Information System (GIS) for soil loss risk assessment in Upper South Koel Basin, Jharkhand. Journal of Geographic Information System, 04(06), 588–596. https://doi.org/10.4236/jgis.2012.46061
Petito, M., Cantalamessa, S., Pagnani, G., Degiorgio, F., Parisse, B., & Pisante, M. (2022). Impact of conservation agriculture on soil erosion in the annual cropland of the Apulia region (Southern Italy) based on the RUSLE-GIS-GEE framework. Agronomy, 12(2), 281. https://doi.org/10.3390/agronomy12020281
Pfeffer, K., Pebesma, E. J., & Burrough, P. A. (2003). Mapping alpine vegetation using vegetation observations and topographic attributes. Landscape Ecology, 18(8), 759–776. https://doi.org/10.1023/b:land.0000014471.78787.d0
Sentani, A., Niam, M. F., & Boogaard, F. (2024). Probability of erosion utilizing Google Earth engine and the RUSLE method in the Tuntang watershed. IOP Conference Series Earth and Environmental Science, 1321(1), 012001. https://doi.org/10.1088/1755-1315/1321/1/012001
Sepahvand, A. R., Ahmadi, H., Nazari Samani, A. A., & FeyzNiya, S. (2018(. Landforms classification by Topographic Position Index and assessment of the relation between landforms and lithological features. Researches in Earth Sciences, 9(1), 30-45. [In Persian]  https://dor.isc.ac/dor/20.1001.1.20088299.1397.9.1.3.8
Shang, R., Peng, P., Shang, F., Jiao, L., Shen, Y., & Stolkin, R. (2020). Semantic segmentation for SAR image based on texture complexity analysis and key superpixels. Remote Sensing, 12(13), 2141. https://doi.org/10.3390/rs12132141
Shen, H., Zheng, F., Wen, L., Han, Y., & Hu, W. (2016). Impacts of rainfall intensity and slope gradient on rill erosion processes at loessial hillslope. Soil and Tillage Research, 155, 429–436. https://doi.org/10.1016/j.still.2015.09.011
Sud, A., Sajan, B., Kanga, S., Singh, S. K., Singh, S., Durin, B., … & Chand, K. (2024). Integrating RUSLE Model with Cloud-Based Geospatial Analysis: A Google Earth Engine Approach for Soil Erosion Assessment in the Satluj Watershed. Water, 16(8), 1073. https://doi.org/10.3390/w16081073
Summerfield, M. A. (2014). Global Geomorphology. London: Routledge.
Trevisani, S., & Rocca, M. (2015). MAD: robust image texture analysis for applications in high resolution geomorphometry. Computers & Geosciences, 81, 78–92. https://doi.org/10.1016/j.cageo.2015.04.003
Verhagen, P., & Drăguţ, L. (2012). Object-based landform delineation and classification from DEMs for archaeological predictive mapping. Journal of Archaeological Science, 39(3), 698–703. https://doi.org/10.1016/j.jas.2011.11.001
Wang, Z., & Su, Y. (2020). Assessment of soil erosion in the Qinba mountains of the southern Shaanxi province in China using the RUSLE model. Sustainability, 12(5), 1733. https://doi.org/10.3390/su12051733
Xiong, L., Tang, G., Yang, X., & Li, F. (2021). Geomorphology-oriented digital terrain analysis: Progress and perspectives. Journal of Geographical Sciences, 31(3), 456–476. https://doi.org/10.1007/s11442-021-1853-9
Xiong, L., Zhu, A., Zhang, L., & Tang, G. (2018). Drainage basin object-based method for regional-scale landform classification: a case study of loess area in China. Physical Geography, 1–19. https://doi.org/10.1080/02723646.2018.1442062
Zawawi, A. A., Shiba, M., & Jemali, N. J. N. (2014). Landform classification for site evaluation and forest planning: integration between scientific approach and traditional concept. Sains Malaysiana, 43(3), 349–358. http://www.ukm.my/jsm/pdf_files/SM-PDF-43-3-2014/04%20Azita%20Ahmad.pdf
 
Zeng, C., Wang, S., Bai, X., Li, Y., Tian, Y., Li, Y., … & Luo, G. (2017). Soil erosion evolution and spatial correlation analysis in a typical karst geomorphology using RUSLE with GIS. Solid Earth, 8(4), 721–736. https://doi.org/10.5194/se-8-721-2017
Zhang, H., Wei, J., Yang, Q., Baartman, J. E., Gai, L., Yang, X.,  ...& Geissen, V. (2017). An improved method for calculating slope length (λ) and the LS parameters of the Revised Universal Soil Loss Equation for large watersheds. Geoderma, 308, 36–45. https://doi.org/10.1016/j.geoderma.2017.08.006
Zhang, H., Zhou, C., Lv, G., Wu, Z., Lu, F., Wang, J., ... & Qin, C. (2020). The Connotation and Inheritance of Geo-information Tupu. Journal of Geo-information Science, 22(4), 653-661. https://doi.org/10.12082/dqxxkx.2020.200167
CAPTCHA Image