واکاوی همدیدی و ماهواره‌ای گردوخاک در استان کردستان

نوع مقاله : مقاله کاربردی

نویسندگان

1 کارشناس هواشناسی همدیدی، اداره کل هواشناسی استان کردستان، سنندج، ایران

2 دانشیار ، مرکز بین المللی مطالعات توفان ماسه و گردوخاک، رئیس پژوهشگاه هواشناسی و علوم جو، تهران، ایران

3 معاون توسعه و پیش‌بینی، اداره کل هواشناسی استان کردستان، سنندج، ایران

4 معاون فنی و شبکه ایستگاه‌ها، اداره کل هواشناسی استان کردستان، سنندج، ایران

5 کارشناس پیش‌بینی، اداره کل هواشناسی استان کردستان، سنندج، ایران

6 پژوهشگر، مرکز بین المللی مطالعات توفان ماسه و گردوخاک، پژوهشگاه هواشناسی و علوم جو

7 پژوهشگر، مرکز بین المللی مطالعات توفان ماسه و گردوخاک، پژوهشگاه هواشناسی و علوم جو، تهران، ایران

8 دانشیار، مرکز بین المللی مطالعات توفان ماسه و گردوخاک، پژوهشگاه هواشناسی و علوم جو

چکیده

پدیده گردوخاک به‌عنوان یکی از مهم‎ترین مخاطرات جوی و زیست‎ محیطی، استان کردستان واقع در غرب کشور را متأثر ساخته و هرساله خسارات زیادی را به زیرساخت‌های مختلف در این استان وارد کرده است. در این مقاله شرایط و منشاء شکل‌گیری رخدادهای گردوخاک در استان کردستان با میانگین 32 روز گردوخاکی در سال برای دوره آماری 1992 تا 2022 با استفاده از روش‌های تحلیل ترکیبی آماری – همدیدی و ماهواره‌ای مورد بررسی قرار گرفت. به این منظور از داده‌های مشاهداتی 8 ایستگاه همدیدی، محصولات ماهواره‌ای، عمق نوری ذرات معلق (AOD) و داده‌های بازکاوی برای ترازهای مختلف جو استفاده شد. همچنین با استفاده از مدل HYSPLIT، مسیرهای انتقال ذرات گردوخاک رهگیری و در نهایت چشمه‌های عمده‌ گردوخاک استان تعیین شد. بر اساس نتایج، فصول بهار با %40 و تابستان با %27 از بیشترین تعداد روزهای همراه با پدیده گردوخاک برخوردارند. پراکنش مکانی گردوخاک نشان داد با حرکت از غرب به شرق و از شمال به جنوب استان تعداد روزهای گردوخاکی کاهش می‌یابد. با توجه به بررسی‌های‌ همدیدی در بیشتر موارد استقرار یک سامانه کم‌فشار بر روی عراق و سوریه و تقویت شرایط ناپایداری در سطح بیابان‌های این مناطق و همچنین قرارگیری منطقه مورد‌مطالعه در جلوی ناوه عمیق، زمینه انتقال گردوخاک به جو منطقه را فراهم می‌آورد. بر اساس نتایج پدیده گردوخاک در استان کردستان از 3 چشمه اصلی شامل رسوبات کف رودخانه‌ها و هورهای خشک‌شده در نواحی مرکزی و جنوبی عراق و بیابان‌های سوریه، اردن و شمال شبه‌جزیره عربستان منشاء می‌گیرد. بیشترین فعالیت این چشمه‌های گردوخاک نیز در فصل‌های بهار و تابستان است.

کلیدواژه‌ها

موضوعات


©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

Al-Khalidi, J., Bakr, D., & Abdullah, A. (2021). Synoptic Analysis of Dust Storm in Iraq. EnvironmentAsia, 14(1), 13-22.  http://dx.doi.org/10.14456/ea.2021.2
Anuforom, A. (2007). Spatial distribution and temporal variability of Harmatan dust haze in sub-sahel west Africa. Atmospheric Environment, 41, 43-47. https://doi.org/10.1016/j.atmosenv.2007.08.003
Ardalan, P. M., & Rahimzadegan, M. (2015). Identification of atmospheric dust on MODIS sensor images using NDDI index (case study: Sanandaj city). Paper presented at the Proceedings of the 2rd National Congress in Environmental Pollution and the Sustainable Development, Sanandaj. [In Persian] https://civilica.com/doc/365078
Bidokhti, A. A. A., Gharaylou, M., Pegahfar, N., Sabetghadam, S., & Rezazadeh, M. (2016). Characteristics of extreme dust events observed over two urban areas in Iran. Journal of Earth System Science125, 431-442. https://doi.org/10.1007/s12040-016-0668-z
Cao, H., Jian, L., Guizhou, W., Guang, Y., & Lei, L. (2015). Identification of sand and dust storm source areas in Iran. Journal of Arid Land, 7(5), 567–578. https://doi.org/10.1007/s40333-015-0127-8
Choubin, B., Sajedi Hosseini, F., Rahmati, O., Mehdizadeh Youshanloei, M., & Jalali, M. (2022). Temporal and Spatial Variations of Dust Days in Western Azarbaijan Province, Determination of the Influencing Factors and Source of Events. Desert Management, 10(2), 71-86. [In Persian] https://doi.org/10.22034/jdmal.2022.550729.1378
Dia, A. C. (2005). Eolian contribution to soils on Mount Cameroon: isotopic and trace element records. Chem Geol, 226, 232–252. https://doi.org/10.1016/j.chemgeo.2005.09.022
Draxler, R., Stunder, B., Rolph, G., Stein, A., & Taylor, A. (2009). HYSPLIT4 user's guide. Air Resources Laboratory Silver Spring, Maryland, Version 4.9.
Ellis Jr, W. G., & Merrill, J. T. (1995). Trajectories for Saharan dust transported to Barbados using Stokes's law to describe gravitational settling. Journal of Applied Meteorology and Climatology34(7), 1716-1726. https://doi.org/10.1175/1520-0450-34.7.1716
Esfandyari darabad, F., Hosseini, S. A., & Mohammadpour, K. (2013). Synoptic statistical analysis of dust storms in Sanandaj city. Paper presented at the Proceedings of the 5th International Congress of the Islamic World Geographers, Tabriz. [In Persian] https://civilica.com/doc/196486
Eslami, A., Atafar, Z., Pirsahab, M., & Asadi, F. (2014). Trends of particulate matter (PM10) concentration and related Air Quality Index (AQI) during 2005-2012 in Kermanshah, Iran. Journal of Health in the Field, 2(1), 19-28. [In Persian] https://doi.org/10.22037/jhf.v2i1.5633
Francis, D. B. K., Flamant, C., Chaboureau, J. P., Banks, J., Cuesta, J., Brindley, H., & Oolman, L. (2017). Dust emission and transport over Iraq associated with the summer Shamal winds. Aeolian Research24, 15-31. https://doi.org/10.1016/j.aeolia.2016.11.001
Ginoux, P. A., Prospero, J. M., Gill, T. E., Hsu, C., & Zhao, M. (2012). Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Reviews of Geophysics, 50(3), 1-36. https://doi.org/10.1029/2012RG000388
Goodarzi, M., Hoseini, A., & Ahmadi, H. (2018). Assessing Temporal and Spatial Distribution of Dust Storm in the south and south west of Iran. Iranian Journal of Watershed Management Science and Engineering, 11(39), 1-10. [In Persian] https://dor.isc.ac/dor/20.1001.1.20089554.1396.11.39.9.7
Goudie, A. S., & Middleton, N. J. (2006). Desert Dust in the Global System. Springer Science & Business Media.
Hejazizadeh, Z., Khosravi, A., Hosseini, S. A., Rahimi, A., & Karbalaee doree, A. R. (2021). Potential analysis of Kavir & Desert Region and Makran Coasts in order to obtain eEnergy from the sun using fuzzy logic and AHP. Journal of Applied Researches in Geographical Sciences, 21(63), 1-18. [In Persian] http://dx.doi.org/10.52547/jgs.21.63.1
Hosseini, S. M., Khoramabadi, F., & Tahani Yazdly, M. (2024). Analysis of Spatio-Temporal Changes of Dust Hazard in Kurdistan Province. Environmental Researches, 14(28), 181-197. [In Persian] https://www.iraneiap.ir/article_191709.html?
 
 
Hsu, N. C., Tsay, S. C., King, M. D., & Herman, J. R. (2006). Deep blue retrievals of Asian aerosol properties during ACE–Asia. IEEE Transactions on Geoscience and Remote Sensing, 44, 3180–3195. https://doi.org/10.1109/TGRS.2006.879540
Jin, Q., Wei, J., Pu, B., Yang, Z. L., & Parajuli, S. P. (2018). High summertime aerosol loadings over the Arabian Sea and their transport pathways. Journal of Geophysical Research: Atmospheres123(18), 10-568. https://doi.org/10.1029/2018JD028588
Khodakarami, A., Hooshyar, M., Javid, A., & Hosseini, S. A. (2022). Finding the Potential of Underground Water Resources of Saghez City using Fuzzy Hierarchical Analysis Process (FAHP) in GIS. Journal of Geography and Regional Development20(4), 173-133. [In Persian] https://doi.org/10.22067/jgrd.2023.77871.1180
Lashkari, H., & Mohammadi, Z. (2022). Comparison and analysis of the temporal and spatial distribution of dust storms with visibility of fewer than 200 meters in western and southwestern Iran. Journal of Spatial Analysis Environmental Hazards, 9(1), 129-150. [In Persian] https://dor.isc.ac/dor/20.1001.1.24237892.1401.9.1.8.4
Li, X., Ge, L., Dong, Y., & Chang, H. C. (2010). Estimating the greatest dust storm in eastern Australia with MODIS satellite images. In  IEEE International Geoscience and Remote Sensing Symposium . Honolulu, Hawaii, USA. http://dx.doi.org/10.1109/IGARSS.2010.5649212
Meshkizadeh, P., Orak, N., & Morshedi, J. (2016). Study of the spatial-temporal distribution of aerosol optical depth (AOD) in Khuzestan Province using remote sensing (RS) technique. Geography and Environmental Studies, 5(17), 69-78. [In Persian] https://sanad.iau.ir/en/Article/978737
Middleton, N., Tozer, P., & Tozer, B. (2019). Sand and dust storms: underrated natural hazards. Disasters43(2), 390-409. https://doi.org/10.1111/disa.12320
Mohammadpour, K., Rashki, A., Sciortino, M., Kaskaoutis, D. G., & Boloorani, A. D. (2022). A statistical approach for identification of dust-AOD hotspots climatology and clustering of dust regimes over Southwest Asia and the Arabian Sea. Atmospheric Pollution Research, 13(4), 101395. https://doi.org/10.1016/j.apr.2022.101395
Mohammadpour, K., Saligheh, M., Darvishi Bloorani, A., & Raziei, T. (2020). Analysis and Comparing Satellite Products and Simulated of AOD in West Iran (2000-2018). Journal of Spatial Analysis Environmental Hazards, 7(1), 15-32. [In Persian] http://dx.doi.org/10.29252/jsaeh.7.1.3
Mohammadpour, K., Saligheh, M., Raziei, T., & Darvishi Bloorani, A. (2024). Spatiotemporal Detection of Dust Seasonal Extremes in Kurdistan Province from MACC and MODIS. Journal of Applied Researches in Geographical Sciences, 24(72), 1-24. [In Persian] http://dx.doi.org/10.52547/jgs.24.72.1
Mohammadpour, K., Sciortino, M., Saligheh, M., Raziei, T., & Boloorani. A. D. (2021). Spatiotemporal regionalization of atmospheric dust based on multivariate analysis of MACC model over Iran. Atmospheric Research, 249, 105322. https://doi.org/10.1016/j.atmosres.2020.105322
Qhavami, S., Kaboodvandpour, S., Mohammadi, B., & Amanollahi, J. (2014). Analysis of synoptic patterns affecting the occurrence of dust storms in Kurdistan province. Journal of Climate Research, 5(19), 67-80. [In Persian] https://clima.irimo.ir/article_15696.html
Qu, J. J., Hao, X., Kafatos, M., & Wang, L. (2006). Asian dust storm monitoring combining Terra and Aqua MODIS SRB measurements. IEEE Geoscience and Remote Sensing Letters3(4), 484-486. https://doi.org/10.1109/LGRS.2006.877752
Refahi, H. Gh. (2004). Wind Erosion and Its Control. Tehran: University of Tehran Press. [In Persian] https://press.ut.ac.ir/book_1602.html
Reyers, M., Hamidi, M., & Shao, Y. (2019). Synoptic analysis and simulation of an unusual dust event over the Atacama Desert. Atmospheric Science Letters20(6), e899. https://doi.org/10.1002/asl.899
Rezaee Banafsheh, M., Dharifi, L., & Pirkhazraian, S. L. (2012). Estimating Dust Volume Using Satellite Images (Case Study: Kurdistan Province). Quarterly Journal of Physical Geography, 5(18), 13-22. [In Persian] https://faculty.tabrizu.ac.ir/mrbanafsheh/fa/articlesInPublications/download/1115
Rezazadeh, M., Irannejad, P., & Shao, Y. J. A. R. (2013). Climatology of the Middle East dust events. Aeolian Research10, 103-109. https://doi.org/10.1016/j.aeolia.2013.04.001
Rostami, D., & Hosseini, S. A. (2018). Analysis and Tracking Dust Phenomenon in South and Southeast of Iran by using HYSPLIT Model and the Principles of Remote Sensing. Journal of Spatial Analysis Environmental Hazards, 5(3), 103-119. [In Persian] http://dx.doi.org/10.29252/jsaeh.5.3.103
Salahi, B., Nohegar, A., & Behrouzi, M. (2019). Tracking of dust at levels of atmospheric in Sanandaj Using HYSPLIT model in order to manage environmental hazards. Geography (Regional Planning), 9(34), 83-95. [In Persian] https://dor.isc.ac/dor/20.1001.1.22286462.1398.9.2.6.2
Sehatkashani, S., VazifeDoust, M., Kamali, G., & Bidokhti, A. A. (2015). Synoptic Analysis and Pressure Patterns of Dust events in the West and South West of Iran. Journal of Climate Research, 1(21), 9-20. [In Persian] https://clima.irimo.ir/article_40440_en.html
Shamshiri, S. (2012). Dust Zoning Using MODIS Satellite Data Case Study: Kermanshah Province. Master's thesis. Isfahan University of Technology. [In Persian]
Soltani, M. J., Motamedvaziri, B., Noroozi, A. A., Ahmadi, H., & Mosaffaei, J. (2021). Identifying and prioritizing the factors affecting the creation of dust in Hendijan City and providing management solutions by DPSIR framework. Watershed Engineering and Management, 13(2), 269-282. [In Persian] https://doi.org/10.22092/ijwmse.2021.352406.1848
USEPA. (2001). EPA/Water Quality, Environmental Matters. Environmental Protection Agency, United States.
CAPTCHA Image