تحلیل تغییرات ائواستاتیک و ژئوستاتیک در پایداری جلگۀ ساحلی خزر ( مطالعۀ موردی: چالوس)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری ژئومورفولوژی، دانشکده جغرافیا، دانشگاه تهران

2 استاد ژئومورفولوژی، دانشکده جغرافیا، دانشگاه تهران

3 دانشیار ژئومورفولوژی، دانشکده جغرافیا، دانشگاه تهران

4 دانشیار ژئومورفولوژی، دانشکده جغرافیا دانشگاه تهران

چکیده

مجموعه‌ای از فرآیندهای محیطی بزرگ‌مقیاس و طولانی‌مدت، از جمله رخدادهای لرزه‌ای، فعالیت‌های ساختمانی، تغییرات کاربری و برداشت آب‌های زیرزمینی، به همراه تغییرات اقلیمی در مناطق ساحلی کم‌ارتفاع می‌تواند منجر به بروز ناپایداری‌های سطح زمین شود. دلتاهای ساحلی چشم‌اندازهایی هستند که به دلیل مجاورت دو محیط خشکی و آبی در برابر فعالیت‌های تکتونیکی آثار مهمی برجای می‌گذارند. از جمله تغییر الگو و مکان شکل‌گیری دلتاها، شکل‌گیری تراس‌های ساحلی نامتوازن در بخش‌هایی از ساحل و به وجود آمدن سواحل بریده‌شده به‌صورت دریابار می‌توان اشاره کرد. در این پژوهش به بررسی تغییرات ژئومورفیک جلگۀ ساحلی چالوس ناشی از فعالیتهای ائواستاتیک و ژئواستاتیک و آثار آنها در تغییرات جلگه و خط ساحلی در محدودۀ چالوس با استفاده از سنجش از دور راداری(مدلهای SBAS وPS) و داده‌های ژئودینامیک پرداخته شد که نتایج به دست آمده از پردازش راداری، داده‌های ژئودینامیک، تغییرات سطح تراز آبهای زیرزمینی، فعالیت‌های ژئوستاتیکی، تغییرات ائوستاتیکی دریای خزر و تغییرات کاربری زمین، نشان می‌دهد جلگۀ چالوس در دو دهۀ گذشته تحت تأثیر فعالیت ژئوستاتیکی دچار برخاستگی شده است. از طرف دیگر خط ساحلی چالوس در نتیجۀ تغییرات کاربری و افزایش بار رسوب رودخانه و کاهش تراز سطح دریای خزر به سمت دریا پیشروی قابل توجهی داشته است که نتیجۀ آن از نظر زیست محیطی و خسارت‌های اقتصادی قابل توجه است. بنابراین احیای پوشش گیاهی و جنگلی در حوضۀ آبریز چالوس جهت کاهش فرسایش و تولید رسوب و پیگیری دیپلماسی برای دادن حق آبۀ دریای خزر توسط کشورهای ذینفع به خصوص کشور روسیه می‌تواند مشکلات به وجود آمده را برطرف کند.

کلیدواژه‌ها

موضوعات


©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing40(11), 2375-2383. https://doi.org/10.1109/TGRS.2002.803792
Bird, E. (1999). Coastal geomorphology: an introduction. Wieley. https://www.wiley.com/en-ae/Coastal+Geomorphology%3A+An+Introduction%2C+2nd+Edition-p-9780470517291
Cigna, F., Osmanoğlu, B., Cabral-Cano, E., Dixon, T. H., Ávila-Olivera, J. A., Garduño-Monroy, V. H., ... & Wdowinski, S. (2012). Monitoring land subsidence and its induced geological hazard with Synthetic Aperture Radar Interferometry: A case study in Morelia, Mexico. Remote Sensing of Environment, 117, 146-161. https://doi.org/10.1016/j.rse.2011.09.005
Dai, Z., Mei, X., Darby, S. E., Lou, Y., & Li, W. (2018). Fluvial sediment transfer in the Changjiang (Yangtze) river-estuary depositional system. Journal of Hydrology566, 719-734. https://doi.org/10.1016/j.jhydrol.2018.09.019
Davis, W. M. (1973). The Geographical Cycle. In: Derbyshire, E. (eds) Climatic Geomorphology. The Geographical Readings Series. London: Palgrave. https://doi.org/10.1007/978-1-349-15508-8_2
Doranti-Tiritan, C., Hackspacher, P. C., de Souza, D. H., & Siqueira-Ribeiro, M. C. (2014). The use of the stream length-gradient index in morphotectonic analysis of drainage basins in Poços de Caldas Plateau, SE Brazil. International Journal of Geosciences5(11), 1383-1394. http://dx.doi.org/10.4236/ijg.2014.511112
Fathollahzadeh, M., Yamani, M., Goorabi, A., Maghsoudi, M., & Ghadimi, M. (2024). Identifying the active tectonic areas of the eastern Caspian coast using radar remote sensing. Scientific-Research Quarterly of Geographical Data (SEPEHR)33(130), 65-78. https://doi.org/10.22131/sepehr.2024.2009124.3010
Goorabi, A., Karimi, M., Yamani, M., & Perissin, D. (2020). Land subsidence in Isfahan metropolitan and its relationship with geological and geomorphological settings revealed by Sentinel-1A InSAR observations. Journal of Arid Environments181, 104238. https://doi.org/10.1016/j.jaridenv.2020.104238
Hussain, M. A., Chen, Z., Shoaib, M., Shah, S. U., Khan, J., & Ying, Z. (2022). Sentinel-1A for monitoring land subsidence of coastal city of Pakistan using Persistent Scatterers In-SAR technique. Scientific Reports12(1), 5294. https://doi.org/10.1038/s41598-022-09359-7
Kanwal, S., Ding, X., Wu, S., & Sajjad, M. (2022). Vertical ground displacements and its impact on erosion along the Karachi coastline, Pakistan. Remote Sensing14(9), 2054. https://doi.org/10.3390/rs14092054
Keller, E. A., & Pinter, N. (2002). Active Tectonics: Earthquakes, Uplift and Landscape. Prentice Hall.https://books.google.com/books/about/Active_Tectonics.html?id=sXASAQAAIAAJ
Lazecký, M., Spaans, K., González, P. J., Maghsoudi, Y., Morishita, Y., Albino, F., ... & Wright, T. J. (2020). LiCSAR: An automatic InSAR tool for measuring and monitoring tectonic and volcanic activity. Remote Sensing12(15), 2430. https://doi.org/10.3390/rs12152430
Ranjbar Barough, Z., & Fathallahzadeh, M. (2022). Investigation of land subsidence, using time series of radar images and its relationship with groundwater level changes (Case study: Karaj metropolis). Quantitative Geomorphological Research, 10(4), 138-155. [In Persian] https://dor.isc.ac/dor/20.1001.1.22519424.1401.10.4.8.3
Shi, X., Liao, M., Li, M., Zhang, L., & Cunningham, C. (2016). Wide-area landslide deformation mapping with multi-path ALOS PALSAR data stacks: A case study of three gorges area, China. Remote Sensing8(2), 136. https://doi.org/10.3390/rs8020136
 
Shirzaei, M., Freymueller, J. T., Törnqvist, T. E., Galloway, D. L., Dura, T., & Minderhoud, P. S. J. (2021). Measuring, modelling and projecting coastal land subsidence. Nature Reviews Earth & Environment, 2(1), 40-58. https://doi.org/10.1038/s43017-020-00115-x
Stanley, D. J., & Warne, A. G. (1998). Nile Delta in its destruction phase. Journal of Coastal Research, 14(3), 795-825. https://www.jstor.org/stable/4298835
Stanley, J. D. (2005). Growth faults, a distinct carbonate-siliciclastic interface and recent coastal evolution, NW Nile Delta, Egypt. Journal of Coastal Research, 42, 309-318. https://www.jstor.org/stable/25736997
Stanley, J. D., & Clemente, P. L. (2014). Clay distributions, grain sizes, sediment thicknesses, and compaction rates to interpret subsidence in Egypt's northern Nile Delta. Journal of Coastal Research30(1), 88-101. https://doi.org/10.2112/JCOASTRES-D-13-00146.1
Syvitski, J. P., Kettner, A. J., Overeem, I., Hutton, E. W., Hannon, M. T., Brakenridge, G. R., ... & Nicholls, R. J. (2009). Sinking deltas due to human activities. Nature Geoscience2(10), 681-686. https://doi.org/10.1038/ngeo629
Wang, H., Wright, T. J., Yu, Y., Lin, H., Jiang, L., Li, C., & Qiu, G. (2012). InSAR reveals coastal subsidence in the Pearl River Delta, China. Geophysical Journal International191(3), 1119-1128. https://doi.org/10.1111/j.1365-246X.2012.05687.x
CAPTCHA Image