پهنه‌بندی خطر وقوع فرونشست زمین در دشت هشتگرد بر اساس رویکرد تلفیقی تصمیم‌گیری چند معیار: WOI-BWM

نوع مقاله : ویژه نامه (چالش جهانی فرونشست زمین: مدیریت بحران یا بحران مدیریت)

نویسندگان

1 دانشجوی دکتری علوم محیط‌زیست، دانشکده منابع طبیعی و محیط‌زیست، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

2 استادیار، گروه علوم محیط‌زیست، دانشکده منابع طبیعی و محیط‌زیست، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

3 دانشیار، پژوهشکده حفاظت خاک و آبخیزداری کشور، سازمان تحقیقات آموزش و ترویج کشاورزی

4 استادیار، گروه علوم محیط‌زیست، دانشکده منابع طبیعی و محیط‌زیست، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

وقوع پدیده فرونشست زمین و خطرات احتمالی آن در دشت‌های ایران به‌ علت بروز بحران آب و خشکسالی، طی سالیان اخیر رشد چشمگیری داشته است. در این مطالعه به پهنه‌بندی خطر وقوع فرونشست در دشت هشتگرد پرداخته و نوزده معیار شامل میزان افت آب زیرزمینی، برداشت آب زیرزمینی، ضخامت آبخوان، ضخامت آبرفت، تغذیه آبخوان، تراکم چاه‌ها، تراکم زهکشی، عمق سطح آب زیرزمینی، نوع سازند زمین‌شناسی، عمق سنگ‌بستر، متوسط بارش سالانه، متوسط دمای سالانه، نوع اقلیم سرزمین، کاربری کشاورزی، کاربری شهری، کاربری صنعتی، فاصله از آبراهه‌، فاصله از جاده و فاصله از گسل به‌عنوان عوامل مؤثر بر وقوع فرونشست منطقه انتخاب شدند. لایه‌های مذکور در سامانه اطلاعات جغرافیایی تهیه، بر اساس مدل بهترین- بدترین (BWM) وزن دهی و با استفاده از شاخص هم‌پوشانی وزین (WIO) ادغام شدند. نتایج روش BWM نشان داد عوامل برداشت از آب زیرزمینی (219/0)، نوع سازند زمین‌شناسی (157/0)، افت سطح آب زیرزمینی (079/0) و عمق آب زیرزمینی (078/0) اهمیت بیشتری بر پتانسیل خطر فرونشست در منطقه موردمطالعه دارند. همچنین به‌منظور ارزیابی نتایج این مدل از منحنی (ROC) استفاده شد که دارای دقتی معادل 90 درصد است. نتایج نشان داد که 66/10، 51/38، 49/31، 66/11 و 69/7 درصد از مساحت دشت هشتگرد به ‌ترتیب به طبقه خطر خیلی کم‌، کم، متوسط، پرخطر و خیلی پرخطر اختصاص یافته است که بر این اساس مناطقی با احتمال فرونشست زیاد در نیمه مرکزی دشت هشتگرد قرار دارند که مستلزم ارزیابى، نظارت و پایش مستمر عوامل مؤثر در وقوع پدیده فرونشست توسط مدیران و برنامه‌ریزان شهری است.

چکیده تصویری

پهنه‌بندی خطر وقوع فرونشست زمین در دشت هشتگرد بر اساس رویکرد تلفیقی تصمیم‌گیری چند معیار: WOI-BWM

کلیدواژه‌ها


ابراهیمی، عطرین؛ قاسمی، افشان؛ گنجائیان، حمید؛ 1399. پایش میزان فرونشست محدوده شهری پاکدشت با استفاده از روش تداخل‌سنجی راداری. جغرافیا و روابط انسانی. دوره 2. شماره 4. صص 41-29.
https://www.gahr.ir/article_105079.html
پژوهشکده مطالعات و تحقیقات منابع آب؛ 1392. پیش‌بینی فرونشست ناشی از بهره‌برداری از منابع آب زیرزمینی با استفاده از مدل‌سازی ترکیبی و تکنیک تداخل‌سنجی در تصاویر ماهواره‌ای راداری. مؤسسه تحقیقات آب. https://www.wri.ac.ir/research-institute-of-water-resources-studies-and-research/
سازمان زمین شناسی و اکتشافات معدنی کشور؛ 1386. گزارش آب زمین‌شناسی دشت هشتگرد- طرح فرونشست زمین در محدوده استان تهران (جلد دوم). شرکت توسعه علوم زمین. https://www.ngdir.ir/down/443
شریفی‌کیا، محمد؛ افضلی، عباسعلی؛ شایان، سیاوش؛ 1394. استخراج و ارزیابی اثرات پدیده‌های ژئومورفولوژیک ناشی از فرونشست در دشت دامغان. پژوهش‌های ژئومورفولوژی کمّی. سال چهارم. شماره 2. صص 74-60. http://www.geomorphologyjournal.ir/article_77991.html
شریفی‌کیا، محمد؛ مال امیری، نعمت؛ شایان، سیاوش؛ 1392. سنجش آسیب‌پذیری سکونت‌گاه‌ها و تأسیسات از مخاطره مورفولوژیکی فرونشست در بخشی از جنوب شهر تهران. جغرافیا و مخاطرات محیطی. دوره 2. شماره 1. صص 106-91. https://doi.org/10.22067/geo.v2i1.21020
شفیعی، نجمه؛ مختاری، لیلا گلی؛ امیراحمدی، ابوالقاسم؛ زندی، رحمان؛ 1398. بررسی فرونشست آبخوان دشت نورآباد با استفاده از روش تداخل‌سنجی راداری. پژوهش‌های ژئومورفولوژی کمی. سال هشتم. شماره 4. صص 111-93.https://doi.org/10.22034/gmpj.2020.106424
عابدینی، موسی؛ آقایاری، لیلا؛ اصغری، صیاد؛ 1401. ارزیابی و پهنه‌بندی خطرفرونشست با استفاده از الگوریتم تطبیقی MABAC و ANP (مطالعه‌ موردی: دشت اردبیل). جغرافیا و مخاطرات محیطی. دوره 10. شماره 2. صص 136-155. https://doi.org/10.22034/GMPJ.2021.215108.1214
محرمی، میثم؛ ارگانی، میثم؛ 1399. پتانسیل‌یابی مناطق مستعد زمین‌لغزش با استفاده از مدل FBWM (مطالعة موردی: شهر تبریز). آمایش سرزمین. دوره 12. شماره 2. صص 593-571.
 https://doi.org/10.22059/jtcp.2020.295295.670058
مهرابی، علی؛ غضنفرپور، حسین؛ 1398. پایش روند تغییرات ارتفاعی سطح زمین در شهر کرمان و تعیین مناطق پرخطر با استفاده از تصاویر راداری ASAR و SENTINEL 1. جغرافیا و مخاطرات محیطی. دوره 8. شماره 2. صص 182-167. https://doi.org/10.22067/geo.v0i0.77132
ندیری، عبدالله؛ طاهری، زینب؛ برزگری، قدرت؛ دیده‌بان، خلیل؛ 1397. ارائه چارچوبی برای تخمین پتانسیل فرونشست آبخوان با استفاده از روش الگوریتم ژنتیک. تحقیقات منابع آب ایران. دوره 14. شماره 2. صص 194-182. http://www.iwrr.ir/article_53792.html
نگهبان، سعید؛ پی سوزی، تینا؛ گنجائیان، حمید؛ نوروزی، میلاد؛ 1400. شناسایی مناطق مستعد وقوع زمین‌لغزش و جابجایی عمودی با استفاده از تصاویر راداری (مطالعه موردی: محدوده شهری و حاشیه شهری لواسان). جغرافیا و مخاطرات محیطی. دوره 10. شماره 3. صص 18-1.
https://doi.org/10.22067/geoeh.2021.71728.1094
 
Abidin H.Z, Andreas H, Gumilar I, Sidiq T.P, Gamal M., 2015. Environmental impacts of land subsidence in urban areas of Indonesia. In FIG Working Week (pp. 1-12). Sofia, Bulgaria: TS 3-Positioning and Measurement. https://www.oicrf.org/-/fig-working-week-2015-from-the-wisdom-of-the-ages-to-the-challenges-of-modern-world
Arabameri A, Lee, S, Rezaie F, Chandra Pal S, Asadi Nalivan O, Saha A, Chowdhuri I, Moayedi H., 2021. Performance evaluation of GIS-based novel ensemble approaches for land subsidence susceptibility mapping. Frontiers in Earth Science, 9, 307. https:// doi.org/ 10.3389/ feart.2021.663678
Chen, B., Gong, H., Lei, K., Li, J., Zhou, C., Gao, & M., et al., 2019. Land subsidence lagging quantification in the main exploration aquifer layers in Beijing plain, China. Applied Earth Observation and Geoinformation, 75, 54-67. https://doi.org/10.1016/j.jag.2018.09.003
Conforti M, Muto F, Rago V, Critelli S., 2014. Landslide inventory map of north-eastern Calabria (South Italy), Maps, 10(1), 90-102. https://doi.org/10.1080/17445647.2013.852142
Desir G, Gutiérrez F, Merino J, Carbonel D, Benito-Calvo A, Guerrero J, Fabregat I., 2018. Rapid subsidence in damaging sinkholes: measurement by high-precision leveling and the role of salt dissolution. Geomorphology, 503, 393-409. https:// doi.org/ 10.1016/ j. geomorph.2017.12.004
Faunt C.C, Sneed M, Traum J, Brandt J.T., 2016. Water availability and land subsidence in the Central Valley, California, USA. Hydrogeology, 24(3), 675–684. https:// doi.org/ 10.1007 /s10040-015-1339-x
Galloway D.L, Jones D.R, Ingebritsen S.E., 1999. Land subsidence in the United States (Vol. 1182). US Geological Survey. https://pubs.usgs.gov/circ/circ1182/pdf/circ1182_intro.pdf
Galloway, D. L., 2013. Subsidence induced by underground extraction. Encyclopedia of Natural Hazards, Springer, 979-985. https://doi.org/10.1007/978-1-4020-4399-4_336
Ghorbanzadeh O, Blaschke T, Aryal J, Gholaminia K., 2020. A new GIS-based technique using an adaptive neuro-fuzzy inference system for land subsidence susceptibility mapping. Spatial Science, 65(3), 401-418. https://doi.org/10.1080/14498596.2018.1505564
Hakim W.L, Achmad A.R, Lee C.W., 2020. Land subsidence susceptibility mapping in jakarta using functional and meta-ensemble machine learning algorithm based on time-series InSAR data. Remote Sensing, 12(21), 3627-3653. https://doi.org/10.3390/rs12213627
Hu B, Zhou J, Wang J, Chen Z, Wang D, Xu S., 2009. Risk assessment of land subsidence at Tianjin coastal area in China, Environmental Earth Sciences. 59(2), 269-276. https://doi.org/10.1007/s12665-009-0024-6
Huang B, Shu L, Yang Y.S., 2012. Groundwater overexploitation causing land subsidence: hazard risk assessment using field observation and spatial modeling. Water Resources Management, 26(14), 4225-4239. https://doi.org/10.1007/s11269-012-0141-y
Jeanne P, Farr T.G, Rutqvist J, Vasco D.W., 2019. Role of agricultural activity on land subsidence in the San Joaquin Valley, California. Hydrology, 569, 462-469. https:// doi.org/ 10.1016/j.jhydrol.2018.11.077
Modoni G, Darini G, Spacagna R.L, Saroli M, Russo G, Croce P., 2013. Spatial analysis of land subsidence induced by groundwater withdrawal. Engineering Geology, 167, 59-71. https://doi.org/10.1016/j.enggeo.2013.10.014
Mohammadi M, Pourghasemi H.R, Amiri M., 2019. Assessment of land subsidence susceptibility in Semnan plain (Iran): A comparison of support vector machine and weights of evidence data mining algorithms. Natural Hazards, 99(2), 951-971. https:// doi.org/ 10.1007/ s11069-019-03785-z
Mokhtari M, Abedian S., 2019. Spatial prediction of landslide susceptibility in Taleghan basin, Iran. Stochastic Environmental Research and Risk Assessment, 33(7), 1297-1325. https://doi.org/10.1007/s00477-019-01696-w
Nadiri A.A, Taheri Z, Khatibi R, Barzegari G, Dideban K., 2018. Introducing a new framework for mapping subsidence vulnerability indices (SVIs): ALPRIFT. Science of the Total Environment, 628, 1043-1057. https://doi.org/10.1016/j.scitotenv.2018.02.031
Navarro-Hernández M.I, Tomás R, Lopez-Sanchez J.M, Cárdenas-Tristán A, Mallorquí J.J., 2020. Spatial Analysis of Land Subsidence in the San Luis Potosi Valley Induced by Aquifer Overexploitation Using the Coherent Pixels Technique (CPT) and Sentinel-1 InSAR Observation. Remote Sensing, 12(22), 3822. https://doi.org/10.3390/rs12223822
Pacheco J, Arzate J, Rojas E, Arroyo M, Yutsis V, Ochoa G., 2006. Delimitation of ground failure zones due to land subsidence using gravity data and finite element modeling in the Quere ´taro valley, Mexico. Engineering Geology, 84(3), 143-160. https:// doi.org/  10.1016/ j.enggeo.2005.12.003
Piscopo G., 2001. Groundwater vulnerability map explanatory Notes-Castlereagh Catchment. NSW Department of Land and Water Conservation, Australia. http:// www. water. nsw. gov.au/ __data/  assets/pdf_file/0008/549377/
Pradhan B, Abokharima M.H, Jebur M.N, Tehrany M.S., 2014. Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS. Natural Hazards, 73(2), 1019-1042. https://doi.org/10.1007/s11069-014-1128-1 quality_ groundwater_ castlereagh_map_notes.pdf
Rahmati O, Falah F, Naghibi S.A, Biggs T, Soltani M, Deo R.C, Artemi C, Mohammadi F, Bui D.T., 2019. Land subsidence modeling using tree-based machine learning algorithms. Science of The Total Environment, 672, 239–252. https:// doi.org/ 10.1016/ j.scitotenv .2019.03.496
Rahnema H,  Mirassi S., 2016. Study of land subsidence around the city of Shiraz, Scientia Iranica. Scientia Iranica, 23(3), 882-895. https://doi.org/10.24200/sci.2016.2167
Ranjgar B, Razavi-Termeh S.V, Foroughnia F, Sadeghi-Niaraki A, Perissin D., 2021. Land subsidence susceptibility mapping using persistent scatterer SAR interferometry technique and optimized hybrid machine learning algorithms. Remote Sensing, 13(7), 1326. https://doi.org/10.3390/rs13071326
Rezaei J., 2016. Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega, 64, 126-130. https://doi.org/10.1016/j.omega.2015.12.001
Sadeghfam S, Khatibi R, Dadashi S, Nadiri A.A., 2020. Transforming subsidence vulnerability indexing based on ALPRIFT into risk indexing using a new fuzzy-catastrophe scheme. Environmental Impact Assessment Review, 82, 106352. https:// doi.org/ 10.1016 /j.eiar.2019.106352
Shrestha P.K, Shakya N.M, Pandey V.P, Birkinshaw S.J, Shrestha S., 2017. Model-based estimation of land subsidence in Kathmandu Valley, Nepal. Geomatics Natural Hazards Risk, 8(2), 974–996. https://doi.org/10.1080/19475705.2017.1289985
Sopata P, Stoch T, Wójcik A, Mrocheń D., 2020. Land Surface Subsidence Due to Mining-Induced Tremors in the Upper Silesian Coal Basin (Poland)-Case Study. Remote Sensing, 12(23), 3923. https://doi.org/10.3390/rs12233923
Tafreshi G.M, Nakhaei M, Lak R., 2019. Land subsidence risk assessment using GIS fuzzy logic spatial modeling in Varamin aquifer, Iran. GeoJournal, 86(38), 1-21. https:// doi.org/ 10.1007/ s10708-019-10129-8
Tosi L, Teatini P, Strozzi T., 2013. Natural versus anthropogenic subsidence of Venice. Scientific reports, 3(1), 1-9. https://doi.org/10.1038/srep02710
UNESCO., 2018. Proposal for the establishment of the land subsidence international initiative (LaSII), United Nations Educational, Scientific and Cultural Organization, Paris. https:// www.usgs.gov/media/files/proposal-creation-land-subsidence-international-initiative
Wang Y. Q, Wang Z. F, Cheng W. C., 2019. A review on land subsidence caused by groundwater withdrawal in Xi’an, China. Bulletin of Engineering Geology and the Environment, 78(4), 2851-2863. https://doi.org/10.1007/s10064-018-1278-6
Zhang H, Yu J, Du C, Xia J, Wang X., 2019. Assessing risks from groundwater exploitation and utilization: Case study of the Shanghai megacity, China. Water, 11(9), 1775. https://doi.org/10.3390/w11091775
Zheng Y.Y, Chen Y.L, Lin H.R, Huang S.Y, Yeh T.C, Wen J.C., 2017. A Simple Model to Describe the Relationship among Rainfall, Groundwater and Land Subsidence under a Heterogeneous Aquifer. In AGU Fall Meeting Abstracts, (Vol. 2017, pp. H34A-08). https://ui.adsabs.harvard.edu/abs/2017AGUFM.H34A..08Z/abstract
Zhou C, Gong H, Chen B, Gao M, Cao Q, Cao J, Duan L, Junjie J, Shi, M., 2020. Land subsidence response to different land use types and water resource utilization in Beijing-Tianjin-Hebei, China. Remote Sensing, 12(3), 457-479. https://doi.org/10.3390/rs12030457
 
 
 
 
 
 
 
CAPTCHA Image