پیش‌نگری تغییرات مقدار بارش فرین با دوره بازگشت‌های مختلف در ایران بر اساس رویکرد همادی ده مدل‌ CMIP6 در آینده نزدیک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار پژوهشگاه هواشناسی و علوم جو، تهران، ایران

2 پژوهشگاه هواشناسی و علوم جو، تهران، ایران

3 اداره کل هواشناسی استان کهگیلویه و بویر احمد، یاسوج، ایران

10.22067/geoeh.2024.86464.1456

چکیده

در پژوهش حاضر تغییرات مقدار بارش فرین با دوره بازگشت­های مختلف در دوره 2050-2026 با ترکیب وزنی 10 مدل CMIP6 در سناریوهای مختلف مطالعه شد. طبق رتبه­بندی مکانی و زمانی ظرفیت­های شبیه­سازی تاریخی 10 مدل CMIP6 در ایران، وزن­های مربوط به هر یک از مدل­ها به دست آمد. سپس با استفاده از روش وزن‌دهی مبتنی بر رتبه، پیش‌نگری مقدار بارش فرین در منطقه موردمطالعه انجام شد. در ادامه بارش­های فرین در بهترین توزیع آﻣﺎری ﻣﻨﻄﺒﻖ ﺑﺮ داده­ﻫﺎ برای هر یک از ایستگاه­ها که در 84 درصد ایستگاه­ها توزیع log-Pearson type3 با آزمون کای­اسکوئر انتخاب گردید. در دوره­ تاریخی (1990-2014) و آینده در هر سه سناریو و دوره بازگشت­های مختلف محاسبه شد. مقایسه پیش­نگری بارش­های فرین با دوره تاریخی نشان داد که درصد تغییرات مقدار بارش فرین پیش­نگری شده در سناریو SSP2-4.5، نسبت به دو سناریو دیگر بیشتر است. همچنین به سمت دوره بازگشت­های طولانی­تر درصد افزایش مقدار بارش پیش­نگری شده افزایش و منطقه رخداد آن نیز گسترش می­یابد. بیشترین افزایش مقدار بارش فرین پیش­نگری شده (بیشتر از 25 درصد) در سناریو خوش­بینانه در ایستگاه­های گرگان، بابلسر، بجنورد، اراک، اصفهان و زاهدان، در سناریو میانه در ایستگاه­های گرگان، سنندج، همدان، اراک، کاشان، اصفهان، شیراز، فسا، میناب، بوشهر، بندرعباس، بندرلنگه، ابوموسی و در سناریو بدبینانه در ایستگاه­های بجنورد، بیرجند، اراک، کاشان و سمنان مشاهده ­شد. افزایش مقدار بارش فرین بیش از 25 درصد در ایستگاه اراک در هر سه سناریو (حدود 70 درصد در سناریوهای SSP1-2.6 و SSP2-4.5، حدود 50 درصد در سناریوی SSP5-8.5 در دوره بازگشت 200 ساله) مشاهده شد.

کلیدواژه‌ها

موضوعات


Alijani, B., & Afshar Manesh, H. (2015). Statistical analysis of long-term precipitation data for fitting an appropriate statistical distribution (Case study: Iran). Zagros Quarterly Journal of Geography and Urban Planning, 7(25), 73-95. [In Persian] https://sanad.iau.ir/Journal/zagros/Article/937845
Alijani, B., O’Brien, J., & Yarnal, B. (2008). Spatial analysis of precipitation intensity and concentration in Iran. Theoretical and Applied Climatology, 94, 107-124. https://doi.org/10.1007/s00704-007-0344-y
Alizadeh, A. (2015). Principles of Applied Hydrology (40th ed.). Mashhad: Imam Reza University Press. [In Persian]
Allen, M. R., & Ingram, W. J. (2002). Constraints on future changes in climate and the hydrologic cycle. Nature419(6903), 224-232. https://doi.org/10.1038/nature01092
Asadi, A., & Akbari Azirani, T. (2021). Analysis of variations the beginning and ending of precipitations with tending models in western south of Iran. Sustainable Development of Geographical Environment3(4), 99-107. [In Persian] https://doi.org/10.52547/SDGE.3.4.99
Azizi, H., & Nejatian, N. (2022). Evaluation of the climate change impact on the intensity and return period for drought indices of SPI and SPEI (study area: Varamin plain). Water Supply, 22(4), 4373-4386. https://doi.org/10.2166/ws.2022.056
Berg, P., Moseley, C., & Haerter, J. O. (2013). Strong increase in convective precipitation in response to higher temperatures. Nature Geoscience6(3), 181-185. https://doi.org/10.1038/ngeo1731
Chen, H. (2013). Projected change in extreme rainfall events in China by the end of the 21st century using CMIP5 models. Chinese Science Bulletin58, 1462-1472. https://doi.org/10.1007/s11434-012-5612-2
Chen, H., Sun, J., Chen, X., & Zhou, W. (2012). CGCM projections of heavy rainfall events in China. International Journal of Climatology32(3), 441-450. https://doi.org/10.1002/joc.2278
Chen, W., Jiang, Z., & Li, L. (2011). Probabilistic projections of climate change over China under the SRES A1B scenario using 28 AOGCMs. Journal of Climate24(17), 4741-4756. https://doi.org/10.1175/2011JCLI4102.1
Dike, V. N., Lin, Z. H., & Ibe, C. C. (2020). Intensification of summer rainfall extremes over Nigeria during recent decades. Atmosphere11(10), 1084. https://doi.org/10.3390/atmos11101084
Hawkins, E., & Sutton, R. (2011). The potential to narrow uncertainty in projections of regional precipitation change. Climate dynamics37, 407-418. https://doi.org/10.1007/s00382-010-0810-6
Hong, J., Javan, K., Shin, Y., & Park, J. S. (2021). Future projections and uncertainty assessment of precipitation extremes in Iran from the CMIP6 ensemble. Atmosphere12(8), 1052. https://doi.org/10.3390/atmos12081052
IPCC. (2020). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://www.ipcc.ch/report/managing-the-risks-of-extreme-events-and-disasters-to-advance-climate-change-adaptation/
Javan, K., Movaghari, A., & Park, J. S. (2023). Projected changes in extreme precipitation indices over the Lake Urmia basin in Iran. Journal of Water and Climate Change14(8), 2564-2582. https://doi.org/10.2166/wcc.2023.447
Jiang, Z., Li, W.,  Xu, J., & Li, L. (2015). Extreme precipitation indices over China in CMIP5 models. Part I: Model evaluation. Journal of Climate28(21), 8603-8619. https://doi.org/10.1175/JCLI-D-15-0099.1
Khansalari, S., & Mohammadi, S. A. (2023). Projection of extreme precipitation over Iran based on the ensemble approach of CMIP6 models in the near future (2026-2050) with rank-based weighting. Journal of the Earth and Space Physics49(3), 727-746. [In Persian] https://doi.org/10.22059/jesphys.2023.351711.1007476
Lee, Y., Paek, J., Park, J. S., & Boo, K. O. (2020). Changes in temperature and rainfall extremes across East Asia in the CMIP5 ensemble. Theoretical and Applied Climatology141, 143-155. https://doi.org/10.1007/s00704-020-03180-w
Lin, Q. J., & Yu, J. Y. (2022). The potential impact of model horizontal resolution on the simulation of atmospheric cloud radiative effect in CMIP6 models. Terrestrial, Atmospheric and Oceanic Sciences33(1), 21. https://doi.org/10.1007/s44195-022-00021-3
Loucks, D. P., Stedinger, J. R., & Haith, D. A. (1981). Water Resource Systems Planning and Analysis. Prentice-Hall.
Mann, M. E., & Kump, L. R. (2015). Dire predictions: Understanding climate change. Pearson.
Meehl, G. A., Senior, C. A., Eyring, V., Flato, G., Lamarque, J. F., Stouffer, R. J., … & Schlund, M. (2020). Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Science Advances6(26), eaba1981. https://doi.org/10.1126/sciadv.aba1981
Peng, Y., Zhao, X., Wu, D., Tang, B., Xu, P., Du, X., & Wang, H. (2018). Spatiotemporal variability in extreme precipitation in China from observations and projections. Water10(8), 1089. https://doi.org/10.3390/w10081089
Ruckstuhl, C., Philipona, R., Morland, J., & Ohmura, A. (2007). Observed relationship between surface specific humidity, integrated water vapor, and longwave downward radiation at different altitudes. Journal of Geophysical Research: Atmospheres112(D3). https://doi.org/10.1029/2006JD007850
Sarabi, M., Dastorani, M. T., & Zarrin, A. (2020). Investigating Impact of Future Climate Changes on Temperature and Precipitation condition (Case Study: Torogh Dam Watershed, Mashhad). Journal of Meteorology and Atmospheric Science3(1), 63-83. doi: 10.22034/jmas.2021.278862.1129. [In Persian] https://doi.org/10.22034/jmas.2021.278862.1129
Sarabi, M., Dastorani, M. T., & Zarrin, A. (2021). The Impact of Future Climate Change on Hydrological Response in Torogh Dam Watershed, Mashhad. Journal of Meteorology and Atmospheric Science3(4), 310-330. [In Persian] https://doi.org/10.22034/jmas.2021.297763.1149
Shahabfar, A., & Qiyami, A. (2001). Evaluation of goodness-of-fit methods for statistical distribution functions and the use of time series for annual rainfall prediction in Mashhad. In Proceedings of the First National Conference on Water Crisis Management Strategies, Zabol, Iran. [In Persian] https://civilica.com/doc/81273/
Tang, B., Hu, W., & Duan, A. (2021). Future projection of extreme precipitation indices over the Indochina Peninsula and South China in CMIP6 models. Journal of Climate34(21), 8793-8811. https://doi.org/10.1175/JCLI-D-20-0946.1
Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres106(D7), 7183-7192. https://doi.org/10.1029/2000JD900719
Trenberth, K. E., Jones, P. D., Ambenje, P., Bojariu, R., Easterling, D., Klein Tank, A., ... & Zhai, P. (2007). Observations. surface and atmospheric climate change. Chapter 3. https://cig.uw.edu/publications/observations-surface-and-atmospheric-climate-change/
Yazdandoost, F., Moradian, S., Izadi, A., & Aghakouchak, A. (2021). Evaluation of CMIP6 precipitation simulations across different climatic zones: Uncertainty and model intercomparison. Atmospheric Research250, 105369. https://doi.org/10.1016/j.atmosres.2020.105369
Zareian, M. (2022). Effects of climate change on temperature and precipitation in yazd province based on combined output of CMIP6 models. JWSS-Isfahan University of Technology, 26(2), 91-105. [In Persian] http://dx.doi.org/10.47176/jwss.26.2.31501
Zarrin, A., & Dadashi Roudbari, A. (2022b). Investigating Precipitation Return Period and its Probability of Occurrence in Iran based on Multi-Source Weighted-Ensemble Precipitation (MSWEP). Journal of Geography and Environmental Hazards10(4), 209-227. [In Persian] https://doi.org/10.22067/geoeh.2021.71102.1079
Zarrin, A., & Dadashi-Roudbari, A. (2021b). Projection of future extreme precipitation in Iran based on CMIP6 multi-model ensemble. Theoretical and Applied Climatology144, 643-660. https://doi.org/10.1007/s00704-021-03568-2
Zarrin, A., & Dadashi-Roudbari, A. (2022a). Technical Note: Assessing the Effect of Climate Change on Heavy Precipitation in Iran Based on a CMIP6 Ensemble Model. Journal of Water and Sustainable Development8(4), 119-124. [In Persian] https://dorl.net/dor/20.1001.1.24235474.1400.8.4.14.9
Zarrin, A., & Dadashi-Roudbari, A. A. (2021a). Projected consecutive dry and wet days in Iran based on CMIP6 bias‐corrected multi‐model ensemble. Journal of the Earth and Space Physics47(3), 561-578. [In Persian] https://doi.org/10.22059/jesphys.2021.319270.1007295
Zarrin, A., Dadashi-Roudbari, A., & Hassani, S. (2022c). Future changes in precipitation extremes over Iran: Insight from a CMIP6 bias-corrected multi-model ensemble. Pure and Applied Geophysics179, 441-464. https://doi.org/10.1007/s00024-021-02904-x
Zhai, P., Zhang, X., Wan, H., & Pan, X. (2005). Trends in total precipitation and frequency of daily precipitation extremes over China. Journal of Climate18(7), 1096-1108. https://doi.org/10.1175/JCLI-3318.1
Zhang, W., & Zhou, T. (2019). Significant increases in extreme precipitation and the associations with global warming over the global land monsoon regions. Journal of Climate32(24), 8465-8488. https://doi.org/10.1175/JCLI-D-18-0662.1
CAPTCHA Image