پهنه‌بندی خطر سیلاب رودخانه دینور با استفاده از روش استاندارد استرالیا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری ژئومورفولوژی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

2 دانشیار دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

10.22067/geoeh.2023.83238.1390

چکیده

سیل یکی از بزرگ‌ترین تهدیدها برای امنیت اجتماعی و توسعه پایدار جامعه است. سیل‌ها می‌توانند ویرانی‌های گسترده‌ای ایجاد کنند که منجر به تلفات جانی و خسارات به اموال شخصی و زیرساخت‌های حیاتی و بهداشت عمومی شود. هدف این پژوهش پهنه‌بندی و برآورد خطر سیلاب رودخانه دینور با استفاده از روش استاندارد استرالیا است. در مطالعه حاضر از مدل هیدرودینامیکی یک‌بعدی HEC-RAS نسخه (6.1) استفاده شده است و از طریق الحاقی  HEC–GEORAS  در محیط GIS پردازش داده­های ژئومتری انجام­ شد. جهت برآورد دبی پیک لحظه‌ای با استفاده از نرم­افزار Hyfran دبی پیک لحظه‌ای محاسبه و پهنه سیلاب با دوره بازگشت­های مختلف شبیه‌سازی شده است. سپس در این مرحله پس از مدل‌سازی و استخراج پارامترهای جریان (سرعت و عمق)، با استفاده از روش استاندارد استرالیا که حاصل‌ضرب دو پارامتر عمق و سرعت جریان ((D*V ناحیه بندی خطر سیلاب انجام گرفت. با توجه به مورفولوژی رودخانه دینور، به سه بازه تقسیم‌بندی شد نتایج حاصل از مدل نشان می­دهد که در بازه اول پهنه سیلاب گسترش چندانی نداشته است؛ اما در بازه­های دوم و سوم سیلاب در دوره بازگشت­های 25 و 50 و 100 سال بسیاری از مراکز روستایی ازجمله روستاهای (قوزیوند، حیدرآباد، شهرک بیستون، کاشانتو، نادرآباد) و زمین­های زراعی را در برگرفته است و غالب منطقه در پهنه خطر H3 و H4 قرار دارد که ضرورت دارد مدیریت سیل و استراتژی کاهش خطر در اولویت‌ برنامه‌ریزی­ها قرار گیرد.

کلیدواژه‌ها

موضوعات


Avand, M., Kuriqi, A., Khazaei, M., & Ghorbanzadeh, O. (2022). DEM resolution effects on machine learning performance for flood probability mapping. Journal of Hydro-Environment Research40, 1-16. https://doi.org/10.1016/j.jher.2021.10.002 
Bait Elahpour, I., Shaibani, H., & Alizadeh, H. (2017). Feasibility of using satellite images in determining river bed limit, case study: Gabrik River. In the eleventh International River Engineering Conference. ]In Persian[ https://civilica.com/doc/898311/
Baky, M. A. A., Islam, M., & Paul, S. (2020). Flood hazard, vulnerability and risk assessment for different land use classes using a flow model. Earth Systems and Environment4, 225-244. https://doi.org/10.1007/s41748-019-00141-w
Bazrafshan, O., Shekari, M., Zamani, H., Dehghanpir, S., & Singh, V. P. (2021). Assessing hydrologic drought risk using multi-dimensional copulas: case study in Karkheh River basin. Environmental Earth Sciences80, 538. https://doi.org/10.1007/s12665-021-09870-6
Bozorgmehr, S. (2019). Iran says recent floods caused up to $2.5 billion in damage. https://www.reuters.com/article/us-iran-floods-idUSKCN1RQ093
Brunner, G. W. (2002). HEC-RAS river analysis system: User's manual. US Army Corps of Engineers, Institute for Water Resources. Hydrologic Engineering Center. https://www.worldcat.org/title/hec-ras-river-analysis-system-users-manual/oclc/646863632&referer=brief_results
Burge, L. (2007). Geomorphology and river management: applications of the river styles framework. The Canadian Geographer51(1), 109-111. https://doi.org/10.1111/j.1541-0064.2007.00168_1.x
Coon, W. F. (1995). Estimates of roughness coefficients for selected natural stream channels with vegetated banks in New York (No. 93-161). US Geological Survey; Earth Science Information Center, Open-File Reports Section.
Echogdali, F. Z., Boutaleb, S., Kpan, R. B., Ouchchen, M., Id-Belqas, M., Dadi, B., ... & Abioui, M. (2022). Flood hazard and susceptibility assessment in a semi-arid environment: A case study of Seyad basin, south of Morocco. Journal of African Earth Sciences196, 104709. https://doi.org/10.1016/j.jafrearsci.2022.104709
Fang, L., Huang, J., Cai, J., & Nitivattananon, V. (2022). Hybrid approach for flood susceptibility assessment in a flood-prone mountainous catchment in China. Journal of Hydrology612, 128091. https://doi.org/10.1016/j.jhydrol.2022.128091
Gudiyangada Nachappa, T., Piralilou, S. T., Gholamnia, K., Ghorbanzadeh, O., Rahmati, O., & Blaschke, T. (2020). Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory. Journal of Hydrology590, 125275. https://doi.org/10.1016/j.jhydrol.2020.125275
Haji Hosseinlou, H., Aghdam, V., & Valizadeghan, E. (2024). Study of the impact of bridge structures on the river floodplain using Hec-Ras and Arc-GIS software (Case study: Sarnagh Bridge on the Zola River). Journal of Geography and Environmental Hazards13(1),47-62. ]In Persian[ https://doi.org/10.22067/geoeh.2022.75257.1175
Horritt, M. S., & Bates, P. D. (2002). Evaluation of 1D and 2D numerical models for predicting river flood inundation. Journal of Hydrology268(1-4), 87-99. https://doi.org/10.1016/S0022-1694(02)00121-X
Hosseinzadeh, M. M. & Esmaeli, R. (2015). Fluvial geomorphology concepts, froms and processes. Tehran: Shahid Beheshti University. ]In Persian ] https://press.sbu.ac.ir/book_241.html 
Jibhakate, S. M., Timbadiya, P. V., & Patel, P. L. (2023). Multiparameter flood hazard, socioeconomic vulnerability and flood risk assessment for densely populated coastal city. Journal of Environmental Management344, 118405. https://doi.org/10.1016/j.jenvman.2023.118405
Lyu, H. M., Shen, S. L., Zhou, A., & Yang, J. (2019). Perspectives for flood risk assessment and management for mega-city metro system. Tunnelling and Underground Space Technology84, 31-44. https://doi.org/10.1016/j.tust.2018.10.019
Mani, P., Chatterjee, C., & Kumar, R. (2014). Flood hazard assessment with multiparameter approach derived from coupled 1D and 2D hydrodynamic flow model. Natural Hazards70, 1553-1574. https://doi.org/10.1007/s11069-013-0891-8
Masih, I., Uhlenbrook, S., Maskey, S., & Smakhtin, V. (2011). Streamflow trends and climate linkages in the Zagros Mountains, Iran. Climatic Change104(2), 317-338. https://doi.org/10.1007/s10584-009-9793-x
Mehta, D. J., Eslamian, S., & Prajapati, K. (2022). Flood modelling for a data-scare semi-arid region using 1-D hydrodynamic model: a case study of Navsari Region. Modeling Earth Systems and Environment8, 2675-2685. https://doi.org/10.1007/s40808-021-01259-5
Mejia-Navarro, M., Wohl, E. E., & Oaks, S. D. (1994). Geological hazards, vulnerability, and risk assessment using GIS: model for Glenwood Springs, Colorado, In M. Morisawa (ed.), Geomorphology and Natural Hazards, 331–354. https://doi.org/10.1016/B978-0-444-82012-9.50025-6
Ministry of Energy. (2020). Manual for providing flood risk map. No.821. Islamic Republic of Iran: Plan and Budget Organization. ]In Persian] https://waterstandard.wrm.ir/cs/WRMResearch/278/396
Modarres, R., Sarhadi, A., & Burn, D. H. (2016). Changes of extreme drought and flood events in Iran. Global and Planetary Change144, 67-81. https://doi.org/10.1016/j.gloplacha.2016.07.008
Mohanty, M. P., Nithya, S., Nair, A. S., Indu, J., Ghosh, S., Bhatt, C. M., ... & Karmakar, S. (2020). Sensitivity of various topographic data in flood management: Implications on inundation mapping over large data-scarce regions. Journal of Hydrology590, 125523. https://doi.org/10.1016/j.jhydrol.2020.125523
Mondal, I., Bandyopadhyay, J., & Paul, A. K. (2016). Estimation of hydrodynamic pattern change of Ichamati River using HEC RAS model, West Bengal, India. Modeling Earth Systems and Environment2, 1-13. https://doi.org/10.1007/s40808-016-0138-2
Nayyeri, H., Kahrizi, S., & Sanikhani, H. (2022). Analysis of the relationship between fractals and the dynamics governing watersheds,(case study Dinvar river basin in Kermanshah province, Iran). Environmental Earth Sciences81(21), 515. https://doi.org/10.1007/s12665-022-10641-0
Parizi, E., Khojeh, S., Hosseini, S. M., & Moghadam, Y. J. (2022). Application of Unmanned Aerial Vehicle DEM in flood modeling and comparison with global DEMs: Case study of Atrak River Basin, Iran. Journal of Environmental Management317, 115492. https://doi.org/10.1016/j.jenvman.2022.115492
Pathan, A. I., & Agnihotri, P. G. (2021). Application of new HEC-RAS version 5 for 1D hydrodynamic flood modeling with special reference through geospatial techniques: a case of River Purna at Navsari, Gujarat, India. Modeling Earth Systems and Environment7, 1133-1144. https://doi.org/10.1007/s40808-020-00961-0
Salman, A., Hassan, S. S., Khan, G. D., Goheer, M. A., Khan, A. A., & Sheraz, K. (2021). HEC-RAS and GIS-based flood plain mapping: A case study of Narai Drain Peshawar. Acta Geophysica69, 1383-1393. https://doi.org/10.1007/s11600-021-00615-4
Schumann, A. H., Funke, R., & Schultz, G. A. (2000). Application of a geographic information system for conceptual rainfall–runoff modeling. Journal of Hydrology240(1-2), 45-61. https://doi.org/10.1016/S0022-1694(00)00312-7
Sharifi, F., Samadi, S. Z., & Wilson, C. A. (2012). Causes and consequences of recent floods in the Golestan catchments and Caspian Sea regions of Iran. Natural Hazards61, 533-550. https://doi.org/10.1007/s11069-011-9934-1
Shokri, A., Sabzevari, S., & Hashemi, S. A. (2020). Impacts of flood on health of Iranian population: Infectious diseases with an emphasis on parasitic infections. Parasite Epidemiology and Control9, e00144. https://doi.org/10.1016/j.parepi.2020.e00144
Thapa, S., Shrestha, A., Lamichhane, S., Adhikari, R., & Gautam, D. (2020). Catchment-scale flood hazard mapping and flood vulnerability analysis of residential buildings: The case of Khando River in eastern Nepal. Journal of Hydrology: Regional Studies30, 100704. https://doi.org/10.1016/j.ejrh.2020.100704
Yari, A., Ardalan, A., Ostadtaghizadeh, A., Zarezadeh, Y., Boubakran, M. S., Bidarpoor, F., & Rahimiforoushani, A. (2019). Underlying factors affecting death due to flood in Iran: A qualitative content analysis. International Journal of Disaster Risk Reduction40, 101258. https://doi.org/10.1016/j.ijdrr.2019.101258
Yerramilli, S. (2012). A hybrid approach of integrating HEC-RAS and GIS towards the identification and assessment of flood risk vulnerability in the city of Jackson, MS. American Journal of Geographic Information System1(1), 7-16. https://doi:10.5923/j.ajgis.20120101.02
 
CAPTCHA Image