شبیه‌سازی تغییرات کربن آلی خاک‌های جنگلی در اثر تغییر اقلیم در ارتفاعات مختلف با استفاده از مدل Roth C

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری مهندسی خاک، دانشگاه زنجان، زنجان، ایران

2 استاد مهندسی خاک، دانشگاه زنجان، زنجان، ایران

3 استادیار مهندسی خاک، دانشگاه زنجان، زنجان، ایران

10.22067/geoeh.2024.85968.1445

چکیده

این پژوهش به بررسی تأثیر ارتفاع و تغییر اقلیم بر ذخیره کربن آلی خاک‌های جنگلی شهرستان تالش در استان گیلان پرداخته است. نمونه‌های مرکب خاک از عمق ۰ - ۳۵ سانتی‌متری و از چهار محدوده ارتفاعی (۵۰۰-۱۰۰۰، ۱۰۰۰-۱۵۰۰، ۱۵۰۰-۲۰۰۰ و ۲۰۰۰-۲۵۰۰ متر بالاتر از سطح دریا) جمع‌آوری و غلظت کربن آلی و سایر ویژگی‌های خاک در آن‌ها اندازه‌گیری گردید. نتایج نشان می‌دهد با افزایش ارتفاع از سطح دریا، ذخیره کربن آلی خاک به دلیل افزایش بارندگی و کاهش دما، افزایش می‌یابد. بیشترین ذخیره مربوط به ارتفاعات ۲۰۰۰ تا ۲۵۰۰ متر (۹۷.۴۶ تن در هکتار) و کم‌ترین آن مربوط به ارتفاعات ۵۰۰ تا ۱۰۰۰ متر (۴۴.۲۳ تن در هکتار) بود. مدل روتامستد (Roth C) به‌طور دقیق و با ضریب همبستگی و تبیین بالای ۰.۹۵، ذخیره کربن آلی خاک‌ها را تخمین زد. در شرایط فعلی، کربن ورودی و خروجی خاک در تعادل و تقریباً معادل ۱.۲۹ تا ۲.۷۶ تن در هکتار در سال است. طبق سناریوهای مدل‌سازی، کاهش بارندگی (۲.۱۵ میلی‌متر در هر ۱۰ سال) و افزایش دما (۰.۴ سانتی‌گراد)، باعث کاهش ۳۳.۵۴ تا ۴۰.۰۱ درصدی ذخیره کربن آلی در همه طبقات ارتفاعی، به‌ویژه در نقاط مرتفع‌تر خواهد شد. در این حالت، خاک به منبعی برای تولید گاز کربنیک تبدیل می‌شود. برعکس، افزایش بارندگی و کاهش دما باعث افزایش ۱۳.۸۴ تا ۱۸.۹۴ درصدی ذخیره کربن آلی در همه طبقات ارتفاعی، به‌ویژه در نقاط مرتفع‌تر خواهد شد. در این حالت، خاک به مخزنی برای نگهداری گاز کربنیک اتمسفری به شکل هوموس تبدیل می‌شود. نتایج نشان می‌دهد مدل‌های شبیه‌سازی دینامیک کربن آلی خاک، ابزارهای دقیقی برای پیش‌بینی و بررسی تأثیر تغییر اقلیم بر این ذخایر، به‌ویژه در خاک‌های جنگلی هستند. این پژوهش تأکید می‌کند حفظ ارتفاعات جنگلی و مدیریت اقلیمی برای جلوگیری از کاهش ذخیره کربن و مقابله با تغییرات اقلیمی، اهمیت ویژه‌ای دارد.

کلیدواژه‌ها

موضوعات


Aguilera, E., Lassaletta, L., Gattinger, A., & Gimeno, B. S. (2013). Managing soil carbon for climate change mitigation and adaptation in Mediterranean cropping systems: A meta-analysis. Agriculture, Ecosystems & Environment168, 25-36. https://doi.org/10.1016/j.agee.2013.02.003
Ahmad Dar, J., & Somaiah, S. (2015). Altitudinal variation of soil organic carbon stocks in temperate forests of Kashmir Himalayas, India. Environmental Monitoring and Assessment187, 1-15. https://doi.org/10.1007/s10661-014-4204-9
Banday, M., Bhardwaj, D. R., & Pala, N. A. (2019). Influence of forest type, altitude and NDVI on soil properties in forests of North Western Himalaya, India. Acta Ecologica Sinica39(1), 50-55. https://doi.org/10.1016/j.chnaes.2018.06.001
Bangroo, S. A., Najar, G. R., & Rasool, A. (2017). Effect of altitude and aspect on soil organic carbon and nitrogen stocks in the Himalayan Mawer Forest Range. Catena158, 63-68. https://doi.org/10.1016/j.catena.2017.06.017
Bhattacharyya, R., Prakash, V., Kundu, S., Srivastva, A. K., Gupta, H. S., & Mitra, S. (2010). Long term effects of fertilization on carbon and nitrogen sequestration and aggregate associated carbon and nitrogen in the Indian sub-Himalayas. Nutrient Cycling in Agroecosystems86, 1-16. https://doi.org/10.1007/s10705-009-9270-y
Blake, G. R., & Hartge, K. H. (1986). Particle density. Methods of soil analysis: Part 1 physical and mineralogical methodsArnold Klute 5, 377-382. https://doi.org/10.2136/sssabookser5.1.2ed.c14
Cardinael, R., Chevallier, T., Cambou, A., Béral, C., Barthès, B. G., Dupraz, C., ... & Chenu, C. (2017). Increased soil organic carbon stocks under agroforestry: A survey of six different sites in France. Agriculture, Ecosystems & Environment236, 243-255. https://doi.org/10.1016/j.agee.2016.12.011
Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature. Geoscientific Model Development7(3), 1247-1250. https://doi.org/10.5194/gmd-7-1247-2014
Choudhury, B. U., Fiyaz, A. R., Mohapatra, K. P., & Ngachan, S. (2016). Impact of land uses, agrophysical variables and altitudinal gradient on soil organic carbon concentration of North‐Eastern Himalayan Region of India. Land Degradation & Development27(4), 1163-1174. https://doi.org/10.1002/ldr.2338
Christensen, B. T. (1992). Physical fractionation of soil and organic matter in primary particle size and density separates. Advances in Soil Science, 20, 1-90. https://doi.org/10.1007/978-1-4612-2930-8_1
Cohen, I., Huang, Y., Chen, J., Benesty, J., Benesty, J., Chen, J., ... & Cohen, I. (2009). Pearson correlation coefficient. Noise reduction in speech processing, 1-4. https://doi.org/10.1007/978-3-642-00296-0_5
Dahlgren, R. A., Boettinger, J. L., Huntington, G. L., & Amundson, R. G. (1997). Soil development along an elevational transect in the western Sierra Nevada, California. Geoderma78(3-4), 207-236. https://doi.org/10.1016/S0016-7061(97)00034-7
Deng, L., Liu, G. B., & Shangguan, Z. P. (2014). Land‐use conversion and changing soil carbon stocks in C hina's ‘Grain‐for‐Green’Program: a synthesis. Global Change Biology20(11), 3544-3556. https://doi.org/10.1111/gcb.12508
Dieleman, W. I., Venter, M., Ramachandra, A., Krockenberger, A. K., & Bird, M. I. (2013). Soil carbon stocks vary predictably with altitude in tropical forests: Implications for soil carbon storage. Geoderma204, 59-67. https://doi.org/10.1016/j.geoderma.2013.04.005
Don, A., Seidel, F., Leifeld, J., Kätterer, T., Martin, M., Pellerin, S., ... & Chenu, C. (2024). Carbon sequestration in soils and climate change mitigation—Definitions and pitfalls. Global Change Biology30(1), e16983. https://doi.org/10.1111/gcb.16983
Dwivedi, D., Riley, W. J., Torn, M. S., Spycher, N., Maggi, F., & Tang, J. Y. (2017). Mineral properties, microbes, transport, and plant-input profiles control vertical distribution and age of soil carbon stocks. Soil Biology and Biochemistry107, 244-259. https://doi.org/10.1016/j.soilbio.2016.12.019
Fallahi, J., Rezvani Moghaddam, P., Nassiri Mahallati, M., & Behdani, M. A. (2013). Validation of RothC model for evaluation of carbon sequestration in a restorated ecosystem under two different climatic scenarios. Water and Soil27(3), 656-668. https://doi.org/10.22067/jsw.v0i0.26092
Farina, R., Coleman, K., & Whitmore, A. P. (2013). Modification of the RothC model for simulations of soil organic C dynamics in dryland regions. Geoderma200, 18-30. https://doi.org/10.1016/j.geoderma.2013.01.021
Field, A. (2024). Discovering statistics using IBM SPSS statistics. Sage publications limited.
Gee, G. W. & Or, D. (2002) Particle Size Analysis. In: Dane, J.H. and Topp, G.C., Eds., Methods of Soil Analysis, Part 4, Physical Methods, Soils Science Society of America, Book Series No. 5, Madison, 255-293.https://doi.org/10.2136/sssabookser5.4.c12
Gibbins, J., & Chalmers, H. (2008). Carbon capture and storage. Energy Policy36(12), 4317-4322. https://doi.org/10.1016/j.enpol.2008.09.058
Jebari, A., Del Prado, A., Pardo, G., Rodriguez Martin, J. A., & Álvaro‐Fuentes, J. (2018). Modeling regional effects of climate change on soil organic carbon in Spain. Journal of Environmental Quality47(4), 644-653. https://doi.org/10.2134/jeq2017.07.0294
Jenkinson, D. S., & Coleman, K. (2008). The turnover of organic carbon in subsoils. Part 2. Modelling carbon turnover. European Journal of Soil Science59(2), 400-413. https://doi.org/10.1111/j.1365-2389.2008.01026.x
Kaczynski, R., Siebielec, G., Hanegraaf, M. C., & Korevaar, H. (2017). Modelling soil carbon trends for agriculture development scenarios at regional level. Geoderma286, 104-115. https://doi.org/10.1016/j.geoderma.2016.10.026
Kashi Zenouzi, L., Shafiee, B., & Jafari, A. A. (2016). Investigating the Effect of Some Environmental Factors on Organic Carbon in ZilberChay Watershed. Journal of Water and Soil Science20(76), 207-218. [In Persian] http://dx.doi.org/10.18869/acadpub.jstnar.20.76.207
Kaveh, A., Mahdian, M. H., Parvizi, Y., Sokouti Oskouei, R., & Masihabadi, M. H. (2014). Investigating effects of topography, soil and climate factors on soil organic carbon storage in drylands of Kermanshah Province. Desert Management2(4), 51-65. [In Persian] https://doi.org/10.22034/jdmal.2014.16659
Kazemi Rad, L., & Mohammadi, H. (2016). Climate change assessment by using LARS-WG model in Gilan Province (Iran). Journal of Geography and Environmental Hazards4(4), 55-74. [In Persian] https://doi.org/10.22067/geo.v4i4.38892
Köchy, M., Don, A., van der Molen, M. K., & Freibauer, A. (2015). Global distribution of soil organic carbon–Part 2: Certainty of changes related to land use and climate. Soil1(1), 367-380. https://doi.org/10.5194/soil-1-367-2015
Komarov, A., Chertov, O., Bykhovets, S., Shaw, C., Nadporozhskaya, M., Frolov, P., ... & Zubkova, E. (2017). Romul_Hum model of soil organic matter formation coupled with soil biota activity. I. Problem formulation, model description, and testing. Ecological Modelling345, 113-124. https://doi.org/10.1016/j.ecolmodel.2016.08.007
Krause, P., Boyle, D. P., & Bäse, F. (2005). Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences5, 89-97. https://doi.org/10.5194/adgeo-5-89-2005
Li, J., Shi, J., Zhang, D. D., Yang, B., Fang, K., & Yue, P. H. (2017). Moisture increase in response to high-altitude warming evidenced by tree-rings on the southeastern Tibetan Plateau. Climate Dynamics48, 649-660. https://link.springer.com/article/10.1007/s00382-016-3101-z
Li, P., Wang, Q., Endo, T., Zhao, X., & Kakubari, Y. (2010). Soil organic carbon stock is closely related to aboveground vegetation properties in cold-temperate mountainous forests. Geoderma154(3-4), 407-415. https://doi.org/10.1016/j.geoderma.2009.11.023
Mansuri, E., Karimi, A., Emamy, H., & Parvizi, Y. (2017). Investigation the Factors affecting soil organic carbon along a gradient climate in Kermanshah Province. Journal of Natural Environment70(1), 197-210. https://doi.org/10.22059/jne.2017.134974.1031
Menard, S. (2000). Coefficients of determination for multiple logistic regression analysis. The American Statistician54(1), 17-24. https://doi.org/10.1080/00031305.2000.10474502 
Muñoz-Rojas, M., Abd-Elmabod, S. K., Zavala, L. M., De la Rosa, D., & Jordán, A. (2017). Climate change impacts on soil organic carbon stocks of Mediterranean agricultural areas: A case study in Northern Egypt. Agriculture, Ecosystems & Environment238, 142-152. https://doi.org/10.1016/j.agee.2016.09.001
Nemoto, R. (2010). Long-term soil carbon changes in different agricultural management systems under past and future climate. Doctoral dissertation, University of Bern. https://occrdata.unibe.ch/students/theses/msc/35.pdf
Nieto, O. M., Castro, J., & Fernández-Ondoño, E. (2013). Conventional tillage versus cover crops in relation to carbon fixation in Mediterranean olive cultivation. Plant and Soil365, 321-335. https://doi.org/10.1007/s11104-012-1395-0
Njeru, C. M., Ekesi, S., Mohamed, S. A., Kinyamario, J. I., Kiboi, S., & Maeda, E. E. (2017). Assessing stock and thresholds detection of soil organic carbon and nitrogen along an altitude gradient in an east Africa mountain ecosystem. Geoderma Regional10, 29-38. https://doi.org/10.1016/j.geodrs.2017.04.002
Papiernik, S. K., Lindstrom, M. J., Schumacher, T. E., Schumacher, J. A., Malo, D. D., & Lobb, D. A. (2007). Characterization of soil profiles in a landscape affected by long-term tillage. Soil and Tillage Research93(2), 335-345. https://doi.org/10.1016/j.still.2006.05.007
Parton, W. J., Schimel, D. S., Cole, C. V., & Ojima, D. S. (1987). Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal51(5), 1173-1179. https://doi.org/10.2136/sssaj1987.03615995005100050015x
Ponce-Hernandez, R., Koohafkan, P., & Antoine, J. (2004). Assessing carbon stocks and modelling win-win scenarios of carbon sequestration through land-use changes (Vol. 1). Food & Agriculture Org.
Qiu, W., Li, Q., Lei, Z. K., Qin, Q. H., Deng, W. L., & Kang, Y. L. (2013). The use of a carbon nanotube sensor for measuring strain by micro-Raman spectroscopy. Carbon53, 161-168. https://doi.org/10.1016/j.carbon.2012.10.043
Quideau, S. A. (2002). Organic matter accumulationEncyclopedia of Soil Science26, 1-4.
Ramesh, T., Manjaiah, K. M., Tomar, J. M. S., & Ngachan, S. V. (2013). Effect of multipurpose tree species on soil fertility and CO 2 efflux under hilly ecosystems of Northeast India. Agroforestry Systems87, 1377-1388. https://doi.org/10.1007/s10457-013-9645-6
Rampazzo Todorovic, G., Stemmer, M., Tatzber, M., Katzlberger, C., Spiegel, H., Zehetner, F., & Gerzabek, M. H. (2010). Soil‐carbon turnover under different crop management: Evaluation of RothC‐model predictions under Pannonian climate conditions. Journal of Plant Nutrition and Soil Science173(5), 662-670. https://doi.org/10.1002/jpln.200800311
Rousta, M. J., Soleimanpour, S. M., Enayati, M., & Pakparvar, M. (2022). Effect of vegetation type and soil chemical properties on the organic carbon content in the soil of flood spreading fields of Kowsar station. https://doi.org/10.52547/ifej.10.19.171
Senthilkumar, S., Kravchenko, A. N., & Robertson, G. P. (2009). Topography influences management system effects on total soil carbon and nitrogen. Soil Science Society of America Journal73(6), 2059-2067. https://doi.org/10.2136/sssaj2008.0392
Shakiba, A., & Rahnama, M. (2003). The impact of climate change on soil carbon variations. In Third Regional Conference on Climate Change, Meteorological Organization, Isfahan.[In Persian] https://civilica.com/doc/12499
Shirato, Y., & Yokozawa, M. (2005). Applying the Rothamsted Carbon Model for long-term experiments on Japanese paddy soils and modifying it by simple tuning of the decomposition rate. Soil Science & Plant Nutrition51(3), 405-415. https://doi.org/10.1111/j.1747-0765.2005.tb00046.x
Singh, S. K., Pandey, C. B., Sidhu, G. S., Sarkar, D., & Sagar, R. (2011). Concentration and stock of carbon in the soils affected by land uses and climates in the western Himalaya, India. Catena87(1), 78-89. https://doi.org/10.1016/j.catena.2011.05.008
Sinoga, J. D. R., Pariente, S., Diaz, A. R., & Murillo, J. F. M. (2012). Variability of relationships between soil organic carbon and some soil properties in Mediterranean rangelands under different climatic conditions (South of Spain). Catena94, 17-25. https://doi.org/10.1016/j.catena.2011.06.004
Smith, P., Smith, J. U., Powlson, D. S., McGill, W. B., Arah, J. R. M., Chertov, O. G., ... & Whitmore, A. P. (1997). A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma81(1-2), 153-225. https://doi.org/10.1016/S0016-7061(97)00087-6
Soleimani, A., Hosseini, S. M., Bavani, A. R. M., Jafari, M., & Francaviglia, R. (2017). Simulating soil organic carbon stock as affected by land cover change and climate change, Hyrcanian forests (northern Iran). Science of The Total Environment599, 1646-1657. https://doi.org/10.1016/j.scitotenv.2017.05.077
Su, X., Yan, X., & Tsai, C. L. (2012). Linear regression. Wiley Interdisciplinary Reviews: Computational Statistics4(3), 275-294. https://doi.org/10.1002/wics.1198
Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science37(1), 29-38. http://dx.doi.org/10.1097/00010694-193401000-00003
Wan, Y., Lin, E., Xiong, W., & Guo, L. (2011). Modeling the impact of climate change on soil organic carbon stock in upland soils in the 21st century in China. Agriculture, Ecosystems & Environment141(1-2), 23-31. https://doi.org/10.1016/j.agee.2011.02.004
Wang, J., Wang, X., Xu, M., Feng, G., Zhang, W., & Lu, C. A. (2015). Crop yield and soil organic matter after long-term straw return to soil in China. Nutrient Cycling in Agroecosystems102, 371-381. https://doi.org/10.1007/s10705-015-9710-9
Yang, Y., Mohammat, A., Feng, J., Zhou, R., & Fang, J. (2007). Storage, patterns and environmental controls of soil organic carbon in China. Biogeochemistry84, 131-141. https://doi.org/10.1007/s10533-007-9109-z
Yokozawa, M., Shirato, Y., Sakamoto, T., Yonemura, S., Nakai, M., & Ohkura, T. (2010). Use of the RothC model to estimate the carbon sequestration potential of organic matter application in Japanese arable soils. Soil Science & Plant Nutrition56(1), 168-176. https://doi.org/10.1111/j.1747-0765.2009.00422.x
Zhang, J., Bei, S., Li, B., Zhang, J., Christie, P., & Li, X. (2019). Organic fertilizer, but not heavy liming, enhances banana biomass, increases soil organic carbon and modifies soil microbiota. Applied Soil Ecology136, 67-79. https://doi.org/10.1016/j.apsoil.2018.12.017
Zhang, Y., Ai, J., Sun, Q., Li, Z., Hou, L., Song, L., ... & Shao, G. (2021). Soil organic carbon and total nitrogen stocks as affected by vegetation types and altitude across the mountainous regions in the Yunnan Province, south-western China. Catena196, 104872. https://doi.org/10.1016/j.catena.2020.104872
Zhao, Y. G., Liu, X. F., Wang, Z. L., & Zhao, S. W. (2015). Soil organic carbon fractions and sequestration across a 150-yr secondary forest chronosequence on the Loess Plateau, China. Catena133, 303-308. https://doi.org/10.1016/j.catena.2015.05.028
Zhu, B., Wang, X., Fang, J., Piao, S., Shen, H., Zhao, S., & Peng, C. (2010). Altitudinal changes in carbon storage of temperate forests on Mt Changbai, Northeast China. Journal of Plant Research123, 439-452. https://doi.org/10.1007/s10265-009-0301-1    
Zimmermann, M., Leifeld, J., & Fuhrer, J. (2007). Quantifying soil organic carbon fractions by infrared-spectroscopy. Soil Biology and Biochemistry39(1), 224-231. https://doi.org/10.1016/j.soilbio.2006.07.010 
CAPTCHA Image