ارزیابی ریسک‌های ناشی از تغییرات اقلیم بر اکوسیستم‌های تالابی با استفاده از مدل GCM (مطالعه موردی: تالاب-های آلاگل، آجی‌گل و آلماگل،استان گلستان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه گلستان

2 مهندسی نقشه‌برداری، موسسه لامعی گرگانی، گرگان، ایران

3 اداره کل هواشناسی استان گلستان،

چکیده

پژوهش حاضر، با توجه به ماهیت مسئله و موضوع موردبررسی، از نوع توصیفی-تحلیلی و از نوع مطالعات کاربردی با هدف شناسایی عوامل تنش ­زای اکولوژیکی ناشی از تغییر اقلیم تالاب­ ها، انجام شده است. درقسمت تغییر اقلیم داده ­های شبیه ­سازی شده میانگین بارندگی حاصل از مدل ‌ HadCM3 در LARS-WG تحت سناریو SRA1B بین سال­های 2021 تا 2050 برﺁورد شده است. به منظور وزن­ دهی به گزینه ­های ریسک و همچنین شاخص ­های موثر برآورد سطح ریسک از فرآیند تحلیل سلسله مراتبی و نرم ­افزار Expert Choice بهره ­گیری شد. بر اساس نتایج مدل ­سازی، سری‌های بارش در ایستگاه اینچه­ برون با روند کاهش تقریبی همراه بوده است. همچنین دمای حداکثر و دمای حداقل روند افزایشی را نشان می‌دهند. بر طبق نتایج، ریسک­ های تهدید کننده تالاب، خشکسالی، وقوع کم ­آبی، افزایش تبخیر و تعرق، رسوب و پر شدن و از بین رفتن زیستگاه می ­باشد. با توجه به اینکه سطح مهم­ترین ریسک­ های شناسایی شده بر اساس اصل ALARP (ارزشیابی ریسک) در طبقه ­بندی زیاد و متوسط می­ باشند، باید نسبت به کنترل، حذف یا کاهش ریسک ­ها اقدام کرد. با توجه به اینکه خشکسالی مهم­ترین ریسک می ­باشد،  طراحی شبکه پایش خشکسالی و محاسبه و تخصیص حق ­آبه زیست محیطی تالاب ­ها مهم­ترین راهکارهای مدیریتی برای جلوگیری از بحران خشکسالی می ­باشند.

کلیدواژه‌ها

موضوعات


©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

Aghashahi, M., Ardestani, M., & Fahmi, H. (2013). Climate Change in Lake Urmia. Master's thesis, University of Tehran, Faculty of Environment. [In Persian]
Alizadeh, A. (2010). Principles of Applied Hydrology (7th ed.). Mashhad: Astan Quds Razavi Publications. [In Persian]
Arekhi, S., Gerkaz, S., & Emadadin, S. (2024). Zoning of flood risk under the influence of climate change using the SWAT hydrological model in a GIS environment (Case study: Gharesu watershed, Golestan province). Climate Change Research, 4(14), 1-26. [In Persian] https://doi.org/10.30488/ccr.2023.394308.1127
Brooks, R. T. (2009). Potential impacts of global climate change on the hydrology and ecology of ephemeral freshwater systems of the forests of the northeastern United States. Climate Change, 95(3), 469–483. http://dx.doi.org/10.1007/s10584-008-9531-9
Bussi, G., Whitehead, P., Thomas, A., Masante, D., Jones, L., Cosby, J., … & Prosser, H. (2017). Climate and land-use change impact on faecal indicator bacteria in a temperate maritime catchment (the River Conwy, Wales). Journal of Hydrology553, 248-261. https://doi.org/10.1016/j.jhydrol.2017.08.011  
Chen, H., Xu, C. Y., & Guo, S. (2012). Comparison and evaluation of multiple GCMs, statistical downscaling and hydrological models in the study of climate change impacts on runoff. Journal of Hydrology434, 36-45. https://doi.org/10.1016/j.jhydrol.2012.02.040
Golestan Province Meteorological Organization. (2019). Statistics and data from meteorological stations. [In Persian]
Gordon, C., Cooper, C., Senior, C. A., Banks, H., Gregory, J. M., Johns, T. C., ... & Wood, R. A. (2000). The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics16, 147-168. https://doi.org/10.1007/s003820050010
Griggs, D. J., & Noguer, M. (2002). Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Weather57(8), 267-269. https://doi.org/10.1256/004316502320517344
Hajivandpaydari, S., Yazdanpanah, H., & Andarzian, S. B. (2022). Investigation of regional effects of climate change phenomenon in the north of Khuzestan province using HadCM3 model under LARS-WG exponential comparison in the statistical period of 2030-2010 and 2050-2030. Geography and Human Relationships5(1), 299-314. [In Persian] https://doi.org/10.22034/gahr.2022.330821.1669
Heller, N. E., & Zavaleta, E. S. (2009). Biodiversity Management in the Face of Climate Change: A Review of 22 Years of Recommendations. Biological Conservation, 142, 14-32.
https://doi.org/10.1016/j.biocon.2008.10.006
Jafariazar, S., Sabzghabaei, G. R., Tavakoly, M., & Dashti, S. (2019). Assessment and Management of environmental risk of Salty, Sweet and Minab Rivers International Wetlands on the basis of multi-criteria decision-making methods. Journal of Spatial Analysis Environmental Hazards, 5(4), 65-88. http://dx.doi.org/10.29252/jsaeh.5.4.65
 
Jafariazar, S., Sabzghabaei, G. R., Tavakoly, M., & Dashti, S. S. (2017). Assessment and Analysis of Khur-e-khuran International Wetland Environmental Risks Using Multi-Criteria Decision-Making Methods. Irrigation Sciences and Engineering40(3), 63-75. [In Persian] https://doi.org/10.22055/jise.2017.13262
Karami, R., Rezaei, H., Salman Mahini, A., & Ghorbani, K. (2022). Climate Change Assessment in the basin of Hamoon International Wetlands Using LARS-WG6 Model. Journal of Natural Environmental Hazards11(31), 107-122. [In Persian] https://doi.org/10.22111/jneh.2021.36069.1710
Khalyani, A. H., Gould, W. A., Harmsen, E., Terando, A., Quinones, M., & Collazo, J. A. (2016). Climate change implications for tropical islands: Interpolating and interpreting statistically downscaled GCM projections for management and planning. Journal of Applied Meteorology and Climatology55(2), 265-282. https://doi.org/10.1175/JAMC-D-15-0182.1
Kim, J., Choi, J., Choi, C., & Park, S. (2013). Impacts of changes in climate and land use/land cover under IPCC RCP scenarios on streamflow in the Hoeya River Basin, Korea. Science of the Total Environment452, 181-195. https://doi.org/10.1016/j.scitotenv.2013.02.005
Kim, K. G., Lee, H., & Lee, D. H. (2011). Wetland restoration to enhance biodiversity in urban areas: a comparative analysis. Landscape and Ecological Engineering7, 27-32. https://doi.org/10.1007/s11355-010-0144-x
Lemly, A. D. (1997). Risk assessment as an environmental management tool: considerations for freshwater wetlands. Environmental Management, 21(3), 343-358. https://doi.org/10.1007/s002679900034
Malekmohammadi, B., & Blouchi, L. R. (2014). Ecological risk assessment of wetland ecosystems using multi criteria decision making and geographic information system. Ecological Indicators41, 133-144. https://doi.org/10.1016/j.ecolind.2014.01.038
Malekmohammadi, B., Blouchi, L. R., Ghehi, N. K., & Shakib, F. J. (2015). Investigating the Effects of Climate Change on Wetlands Using Risk Assessment and Remote Sensing (Case Study: Choghakhor Wetland, Iran). Paper presented at the US-Iran Symposium on Climate Change: Impacts and Mitigations, California.
McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. Paper presented at the Proceedings of the 8th Conference on Applied Climatology (pp. 179-183).
Mehdinasab, M., & Bagherzadeh Karimi, M. (2020). Environmental Risk Assessment of Poldokhtar Wetlands Based on Model EFMEA. Environment and Interdisciplinary Development5(69), 27-36. [In Persian] https://doi.org/10.22034/envj.2020.181306
Panahi, A. P., Janbaz Ghobadi, G., Motavalli, S., & Khaledi, S. (2024). Investigating climate change and transformation of natural components with emphasis on floods (Case study: Gorganrood watershed). Journal of Geography and Environmental Hazards13(3), 184-213. [In Persian] https://doi.org/10.22067/geoeh.2023.84657.1419
Panahi, A., Janbaz Ghobadi, G., Motavalli, S., & Khaledi, S. (2023). Measuring and predicting flood potential under climate change conditions (case study: Gorganrood watershed). Geographical Studies of Coastal Areas Journal4(2), 45-61. [In Persian] https://doi.org/10.22124/gscaj.2023.22411.1172
Rahimi Blouchi, L., & Malekmohammadi, B. (2013). Environmental Risk Assessment of Shadegan International Wetland Based on Ecological Indicators. Journal of Environmental Studies39(1), 101-112. [In Persian] https://doi.org/10.22059/jes.2013.30394
Ramsar Convention Secretariat. (2007). Ramsar Handbooks for the Wise Use of Wetlands(3rd ed.). Ramsar Convention Secretariat: Gland, Switzerland. https://www.gwp.org/globalassets/global/toolbox/references/wise-use-of-wetlands-ramsar-2007.pdf
Semenov, M. A., Brooks, R. J., Barrow, E. M., & Richardson, C. W. (1998). Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates. Climate Research10(2), 95-107. http://dx.doi.org/10.3354/cr010095
UNDP. (2013). National Environment Council for Sustainable Development. Sustainable Wetland Management in the Face of Climate Risks in Niger: The Case of La Mare de Tabalak, International Institute for Sustainable Development (IISD).
Ziaee, N., Ownegh, M., Asgari, H. R., Massah Bavani, A. R., Salman Mahini, A., & Hoseinalizadeh, M. (2019). Forecasting future climate variables using HadCM3 model and climate scenarios, case study: selected synoptic stations of Hableh Roud Basin. Watershed Engineering and Management11(3), 771-783. [In Persian] https://doi.org/10.22092/ijwmse.2017.110512.1298
CAPTCHA Image