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Abstract 

Providing climatic data like temperature in good spatial resolution is a key requirement 

for many geographical, ecological and bioclimatic research. With this in mind, various 

related studies use thermal remote sensing images as auxiliary data to enhance the air 

temperature interpolation outcomes. That’s while normally summer season images are 

used as auxiliary data and less attention has been paid to winter season acquired images 

which are often covered by snowy areas. With this in mind, the Snow Covered Area 

(SCA) extent impacts on air temperature interpolation were investigated. The data used 

were temperature data and four Landsat thermal images of December 1986 and 1999. To 

calculate the area of snow cover, band combination and NDSI index were used. Results 

show that Thermal Co-Kriging (TCK) of December 1986 provide better results with more 

snow affected thermal image. While in 1999 although different results were obtained but 

the best selected output did not show impacts of different snow cover area. These results 

revealed that probably the SCA extent threshold could be different and could be found 

with more research. Finally, we know that number of our observation stations are too low 

and considering the Kriging requirements like normal distribution and stationarity are 

toilsome but we should consider that this problem exists in the regions with low density 

of gauges and should find a way to enhance the air temperature interpolation in these 

cases. At the end, using high resolution, Landsat thermal bands improve our ability to 

explain and visualize local temperature variability into a variety of applications such as 

deriving temperature dependent climatic variables, species distribution modelling and 

assessments of fire risk. 
Key words: Interpolation, Thermal co-kriging, Kriging, Golestan 

1. Introduction  

Spatial interpolation is one of the most often-used geographic techniques for spatial data 

visualization, spatial query of properties, and spatial decision-making processes in 

geography, earth sciences, and environmental science (Meng, Liu and Borders, 2013). 
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Indeed, spatial interpolation is often used to predict a value of a variable of interest at 

unmeasured locations with available measurements at sampled sites (Kyriakidis and 

Goodchild, 2006; Meng et al., 2013). Moreover, the spatial interpolation also applies for 

temperature mapping. Air temperature is one of the input variables for land evaluation 

and characterization systems, as well as hydrological and ecological models (Benavides, 

Montes, Rubio and Osoro, 2007; Minaei and Irannezhad, 2016). Benavides et al. (2007) 

and some others (e.g,. Li, Cheng, and Lu, 2005) believe that air temperature modeling in 

mountainous regions is a challenge and it is difficult to obtain precise climatic maps. 

Nonetheless, different interpolation methods have been used to model the spatial 

distribution of air temperature. The most widely used are the inverse distance 

interpolation weighting, Voronoi tessellation, regression analysis or, more recently, 

geostatistical methods (Benavides et al., 2007; Minaei and Minaei, 2017; Moteallemi, 

Bina, Minaei and Mortezaie, 2017). The addition of auxiliary variables is often believed 

to increase the performance of spatial prediction (Meng et al., 2013). Some auxiliary 

variables that are used whole around the world by researchers in different fields of study 

are Digital Elevation Model (DEM), slope, aspect, distance to sea, solar radiation, land 

cover, NDVI and so on (Benavides et al., 2007; Boi, Fiori and Canu, 2011; Jabot, Zin, 

Lebel, Gautheron and Obled, 2012; Meng, 2006). For example, Kalivas, Kollias and 

Apostolidis, (2013) applied the slope as the auxiliary data to interpolate the forest volume 

as an interesting topic for forest managers. Alsamamra, Ruiz-Arias, Pozo-Vazquez and 

Tovar-Pescador, (2009) interpolated the solar radiation in the southern Spain and used 

elevation and shadows cast as external variables. Meng (2014) used IKONOS bands 2 

and 3 which was auxiliary data to interpolate band 2 using regression kriging versus 

Geographically Weighted Regression method.  

In case of temperature interpolation using auxiliary data, Boi et al. (2011) used five 

parameters including elevation, sea distance, longitude, latitude and relative elevation to 

interpolate means of maximum and minimum daily temperatures. Meng et al. (2013) 

investigated the spatial interpolation of annual maximum temperature in the central Big 

Sur in California using elevation as the auxiliary variable. Benavides et al., (2007) 

implemented geostatistical modeling over a mountainous region in the Spain to 

interpolate monthly mean air temperature and used the elevation as an auxiliary data. 

Arundel (2005) included elevation and slope as independent variables to interpolate the 

temperature and precipitation. Hengl, Heuvelink, Tadic, and Pebesma, (2012) used 

latitude, longitude, DEM, topographically weighted distance from the coast line, and 

topographic wetness index, total insolation and MODIS LST images to provide daily 

temperature maps. They found that MODIS time series of LST images could be 

successfully combined with ground measurements of temperatures to produce more 

accurate and more detailed predictions of daily temperature (Hengl et al., 2012). A 

problem in their study was regarding the MODIS images that had 10-30% missing pixels. 

Cristobal, Ninyerola and Pons, (2008) measured the role of geographical and remotely 

sensed predictors in air temperature interpolation in the Catalonia, Spain. They used 

altitude, latitude, continentality and solar radiation as geographical variables and LST and 

NDVI in Landsat TM, ETM+, AVHRR and MODIS images. They identify that combined 

geographical and remotely sensed variables provide better results and among these 
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variables the LST and NDVI are the most powerful remote sensing predictors. Zheng, 

Zhu and Yan, (2013) performed monthly air temperature interpolation using MODIS LST 

and NDVI, too. Stewart and Nitschke (2017) recently used MODIS LST and local 

topography to improve temperature interpolation.  

Literature reveals that remotely sensed data can provide a valuable source of information 

to understand spatial phenomena (Joyce, Wright, Samsonov and Ambrosia, 2009) and are 

able to deal with the thermal characteristics of earth surface (Prakash, 2000). Most of the 

studies, however, used warm season acquired RS images as auxiliary data. While we want 

to investigate the usability of cold season remote sensing images as auxiliary data because 

we need accurate spatial temperature data in all seasons. In case of cold season images, 

in the north east of Iran as like as many areas in high latitudes, ground surface of satellite 

images acquired in cold seasons (if the sky be cloud free) are covered by snow. According 

to the snow cover area (SCA) the impact on the air temperature and dependency of 

thermal data’s nature to temperature we decided to use the snow covered thermal images 

in spatial interpolation. We aimed to investigate the relationship between the area of snow 

covered lands and accuracy of interpolation. 

To this end, we decided to use thermal band of Landsat because of better resolution in 

comparison to MODIS to answer the requirement of many geographical, ecological, 

biological, and bioclimatic spatial studies to higher resolution information in their studies 

(Attorre, Alfo, De Sanctis, Francesconi, and Bruno, 2007; Zaksek and Schroedter-

Homscheidt, 2009); however, these have not been thoroughly tested to date. In this regard, 

to analyze the impact of area of snow cover in providing spatial data of temperature, we 

used four approximately cloud free Landsat thermal images, two for December 1986 and 

two others for December 1999 to evaluate SCA and temperature interpolation 

relationships in a complex topographic region of north-east of Iran. In other words, this 

research will investigate the relations between the extent of snow cover area in the thermal 

remote sensing images as auxiliary data and spatial interpolation of mean air temperature 

using Geostatistics. 

Study area 

Study area is located in the northeastern part of Iran and covers an area of 18000 km2 

(Fig. 1). It is located between the latitude of 36° 43’ and 38° 07’N and the longitude of 

54° 19’ and 56° 25’E. It included most of Gorganrood watershed and parts of Atrak and 

Gharasoo watersheds. The altitude range is between -30 to 2956 meters above sea level. 

This region is very important from a number of viewpoints. First, its agricultural 

production activities are important, as it has valuable and fertile soils. Second, about 

2,000,000 people live in flood prone areas within the study zone (Statistical-Center-of-

Iran, 2012). Third, Golestan National Park, a UNESCO heritage site, is located in this 

region, and contains valuable and old forests, a high level of diversity in terms of flora 

and fauna, as well as a number of endangered species, all of which suffer when there are 

floods, Climate Change (CC) and Land Cover/Land Use change (LCLUc) (Minaei and 

Kainz, 2016). Moreover, the study area is a geographically complex region that 

experiences remarkable climate variations. The plains are located in the east and center, 

while to the south the area is covered by dense forests and dry highlands. The northern 
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area is semi-arid and mostly hilly in terms of its topography (Delbari, Afrasiab and jahani, 

2013; Minaei and Minaei, 2017). 

 

Fig 1. Location of study area and meteorological stations 

Materials and Methods 

This research will follow the methodology flowchart presented in the Fig. 2. The air 

temperature data will be interpolated using thermal images as auxiliary and 

simultaneously the SCA of images will be extracted by NDSI index to be used in 

analyzing the results. Detailed description of methodology is presented below.  
 

 
Fig. 2.  Methodology Flowchart 

 

For this research, two categories of data were used: mean air temperature data (Table 1) 

as station points and Remote Sensing images as raster. Thermal bands of four 

approximately cloud free Landsat TM and ETM+ images (path 162, row 34) for 
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December 1986 and 1999 were the raster data of the research (Fig. 3). TM and ETM+ 

sensor thermal bands are in the 10.40-12.50 µm with spatial resolution of 120/60 m 

(USGS, 2013). The images from EROS Data Center have already been processed into a 

standard level of geometric and terrain accuracy (Minaei and Minaei, 2017). Therefore, 

images were selected and downloaded from the United States’ Geological Surveys 

(USGS) National Center for Earth Resources Observation and Science 

(http://glovis.usgs.gov). 
  

Table 1. Meteorological Stations 

Station Latitude Longitude Elevation(m) 

Tamar 37° 29ˊ 55° 30ˊ 132 

Gonbad 37° 14ˊ 55° 09ˊ 36 

Araz-kuse 37° 13ˊ 55° 08ˊ 34 

Bhalke Dashli 37° 04ˊ 54° 47ˊ 24 

Fazel-abad 37° 54ˊ 54° 45ˊ 210 

Sad-gorgan 37° 12ˊ 54° 44ˊ 12 

Ghafar-haji 37° 00ˊ 54° 08ˊ -22 

Cheshme-khan 37° 18ˊ 56° 07ˊ 1250 

Robat-gharabil 37° 21ˊ 56° 18ˊ 1450 
 

 

 
 

Fig. 3. Satellite images of the study area with SCA in A) 1986 first image (3786.9 

Km2), B) 1986 second image (1003 Km2), C) 1999 first image (1261.4 Km2) and D) 1999 

second image (367.2 Km2) 

http://glovis.usgs.gov/
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Geostatistics: Kriging/Co-Kriging 

As a brief description, Kriging is a geostatistical interpolation method derived from 

regionalized variable theory. It assumes that the distance, direction or both can be 

employed to explain variation in the surface between observations that show spatial 

correlation (Chen, Yue, Dai and Tian, 2013). Kriging can offer the best linear unbiased 

estimates with an accurate description of the spatial structure of the data and valuable 

information about estimation error distributions (Chen et al., 2013; Oliver and Webster, 

1990). A clear improvement to ordinary space–time kriging includes the use of auxiliary 

data to aid the estimation process, referred to as external drift (Wentz, Peuquet, and 

Anderson, 2010). Co-kriging is a versatile statistical approach for spatial point estimation, 

especially, when both primary and auxiliary attributes are available. If each component 

of z(s0) satisfies the intrinsic hypothesis that assumes that stationarity of the differences 

between pairs of data points exists in the first and second moments, then Co-kriging is 

unbiased and defined by equations 1, 2, and 3 (Meng, 2006; Meng et al., 2013). 

 

�̂�(𝑠0) = ∑ 𝑧(𝑠𝑗)𝛬𝑗•
𝑛
𝑗=1          (1) 

 

∑ 𝛬𝑗• =  𝐼𝑛
𝑗=1           (2)  

 

∑ 𝛤(𝑠𝑖,𝑠𝑗) + Ψ = 𝛤(𝑠𝑖,𝑠0)     𝑖 = 1, … , 𝑛𝑣
∅=1       (3) 

 

Where I is an identity matrix = [1, 0, …, 0]T, T indicates a transpose, and Λj• is the weights 

associated with the prediction. z(sj) is the vector z1(sj)…zm(sj). Γ(si,sj) and Γ(si,s0) are the 

cross variograms and Ψ is the Lagrange Multiplier for i from 1 to n (Meng, 2006; Meng 

et al., 2013). We used the original thermal bands of Landsat and not the LST or NDVI as 

the auxiliary data to reduce the input data preparing time and to provide a bigger range of 

values in the predictor variable. At the end, the ordinary and simple kriging and Co-

kriging with and without transformations (regarding season data properties), optimization 

and stable model were implemented and tested and the results of them were compared to 

select the best output of anyone. 

Validation and Comparison  

The leave-one-out cross-validation is a commonly applied method in Geostatistics 

because no reserved data are required for the data validation (Benavides et al., 2007). The 

number of sampled sites with climatic data is usually not very large and they are sparse 

throughout the study area, so all the sampled data are used for the spatial prediction in 

order to improve the precision of the predictions (Benavides et al., 2007). In this regards, 

results were compared by goodness-of fit statistics such as Mean Error (ME), Root Mean 

Square Error (RMSE), Mean Standardized Error (MSE), Average Standard Error (ASE) 

and Root Mean Square Standardized Error (RMSSE) (ArcGIS Help, 2014; Benavides et 

al., 2007; Chen et al., 2013; Delbari et al., 2013; Meng et al., 2013; Wang, Liu, Zhang 

and Wu, 2011). 

𝑀𝐸 =
1

𝑛
∑ [𝑍(𝑥𝑖) − 𝑍′(𝑥𝑖)]𝑛

𝑖=1         (4) 
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𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ [𝑍 (𝑥𝑖) − 𝑍′(𝑥𝑖)]2𝑛

𝑖=1         (5) 

𝑀𝑆𝐸 =
∑ [𝑍(𝑥𝑖)−𝑍′(𝑥𝑖)]𝑛

𝑖=1 /𝜎(𝑥𝑖)

𝑛
         (6) 

𝐴𝑆𝐸 = √
1

𝑛
∑ [𝑍′(𝑥𝑖) − ∑ 𝑍′(𝑥𝑖)/𝑛𝑛

𝑖=1 ]2𝑛
𝑖=1        (7) 

𝑅𝑀𝑆𝑆𝐸 =  
1

𝑛
∑ [𝑍1(𝑥𝑖) − 𝑍2(𝑥𝑖)] 2𝑛

𝑖=1        (8) 

 

Where 𝑍  (𝑥𝑖) is the measured value of the sample points, and its fitted values are 𝑍′(𝑥𝑖); 

Standard values of them are 𝑍1(𝑥𝑖)  and 𝑍2(𝑥𝑖)  respectively, and 𝜎(𝑥𝑖)  is standard 

deviation (ArcGIS Help, 2014; Kalivas et al., 2013; Wang et al., 2011). 
The ME measures the bias of the prediction and should be close to zero for unbiased 

methods. It indicates whether the model is, on average, producing estimates that are 

overestimating or underestimating the observed values. In a well-adapted model, ME and 

SME should be close to zero for unbiased methods. The RMSE measures the average 

precision of the prediction and should be as small as possible. The model that performs 

the best will be the one with the smallest RMSE. This would suggest that the predictions 

are impartial and close to the respective real values. The values of ASE are used in order 

to evaluate the prediction divergence from real values. Therefore, ASE should be the same 

as RMSE, in order to evaluate the divergence of predictions correctly. If the value of the 

ASE is greater than that of the RMSE this suggests that the variability of the predictions 

is overestimated. Conversely, if the RMSE is greater than the ASE the variability of the 

predictions is underestimated. The values of RMSSE should be close to 1. If the RMSSE 

are greater than 1, then the variability of the predictions is underestimated; if the RMSSE 

are less than 1, the variability of the predictions is overestimated (ArcGIS Help 2014; 

Kalivas et al., 2013; Wang et al., 2011). 

The ME, RMSE, ASE, SME and RMSSE were calculated to check the performance of 

each state of interpolations. Therefore, results based on above described rules were 

compared. 

Image Processing: Snow Cover Mapping 

Methods for snow-cover mapping can be categorized into three types: manual 

interpretation, classification-based, and index-based methods (Yin, Cao, Chen, Shao and 

Chen, 2013). Manual-based methods are the most accurate; however, they are difficult 

and time-consuming to perform and require the skills of experienced specialists (Yin et 

al., 2013). Index-based methods, where the normalized difference snow index (NDSI) is 

frequently used, take advantage of the spectral feature of snow cover characterized as 

strong reflection in visible/near-infrared wavelengths and nearly total absorption of 

middle-infrared wavelengths (Crawford, Manson, Bauer, and Hall, 2013; Dozier, 1989; 

Hancock, Baxter, Evans and Huntley, 2013; Riggs, Hall and Salomonson, 1994; Yin et 

al., 2013). 
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In this regard, to map the snow cover area, we followed some steps like spectral 

characteristics and bands combination to better visualize snow cover and calculate NDSI 

to combine the manual interpretation and index-based methods.  

Spectral Characteristics and Bands Combinations 

According to Erdenetuya, Khishigsuren, Davaa, and Otgontugs, (2006) and Bakr, 

Weindorf, Bahnassy, Marei, and El-Badawi, (2010), to recognize snowy areas with 

regards to snow spectral characteristics, band combination was used and snow affected 

regions were extracted in 4,3,2 and 3,2,1 and 5,4,3 combinations as showed in Fig 4 and 

5.  

 

Fig. 4. Snow spectral reflectance. Snow 

shows variation in spectral reflectance 

according to the size of crystals in μ (Farooq, 

2015). 

Fig. 5. Landsat band combination to 

show snow cover (Erdenetuya et al., 

2006). 
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 NDSI 

As indicated above, the NDSI is the ratio of the difference between reflectance in the 

infra-red and the visible bands to the sum of the two, to estimate the fractional snow cover 

(Crawford et al., 2013; Dozier, 1989; Hancock et al., 2013; Riggs et al., 1994). In order 

to distinguish snow from similarly bright soil, rock and cloud we have calculated NDSI 

using the following formulae: 

 

𝑁𝐷𝑆𝐼 =   ((𝐵𝑎𝑛𝑑2 − 𝐵𝑎𝑛𝑑5)/(𝐵𝑎𝑛𝑑2 + 𝑏𝑎𝑛𝑑5))    (9) 

 

Where: Band2 and Band5 are Landsat band data (Crawford et al., 2013; Dozier, 1989; 

Erdenetuya et al., 2006; Klein and Isacks, 1999; Riggs et al., 1994; Wolter, Berkley, 

Peckham, Singh, and Townsend, 2012). 

Results and Discussion 

To investigate impact of snow cover extent in images on Geostatistical modeling of air 

temperature, the area of snow covered regions were extracted from satellite images. The 

areas of snow cover in each image are presented in Table 2. As can be seen, the greatest 

area was in December 13, 1986 with around 3800 Km2, and December 9, 1999 image 

with less than 400 Km2 had the smallest SCA. 

 

Table 2. Snow covered area in each image 

Sensor / Acquisition date Snow cover area (Km2) 

TM / 1986.12.13 3786.9 

TM / 1986.12.29 1003 

TM / 1999.12.01 1261.4 

ETM+ / 1999.12.09 367.2 

 

Fig 6 shows some of the predicted maps with the most accurate results. The maps reveal 

that thermal images have significant impacts and patterns on the interpolation results. 

Generally, cold temperature spreads in the east of the region including highlands and the 

warm air temperature is in the interior and somehow north-west (plains). Moreover, a 

very significant point is that using thermal satellite bands as auxiliary data enhances the 

spatial quality of the interpolation as presented in details in Fig 6 E-H sections. Section E 

shows the impacts of topography on local air temperature interpolation. F presents the 

impact of land cover in interpolation and presents the context of climatic neighborhood 

of earth features. G shows the impact of the slope aspect on the interpolation of 

temperature as the south aspects are warmer. And finally in the section, H, the water 

bodies’ impacts on the local air temperature are clearly presented. That is why in normal 

interpolation of air temperature deriving this information is approximately impossible and 

in case of using other auxiliary data several of them (DEM, Land cover, and so on) are 

needed to provide these results. 
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Fig. 6. Some of the air temperature interpolated maps for 1986 and 1999 cold seasons. A) 

Standard error maps for TCK1986 with more snow covered image. B) TCK1986 with low 

snow cover image. C) 1999 interpolation with more snow affected image and D) TCk1999 

with second satellite image. E) Topographic impact, F) Land cover impact, G) Slope 

aspect impact and E) water bodies’ impacts on air temperature interpolation. 

 

Evaluation and comparing goodness-of fit statistics in Table 3 shows the difference 

between Thermal Co-Kriging (TCK) outputs based on snow cover area.  
 

Table 3. Results of ME, RMSE, MSE, RMSSE and ASE. 
Geostatistics Method TCK1986-1 TCK1986-2 TCK1999-1 TCK1999-2 

Best ME     

ME 0.00 0.00 -0.01 -0.01 

RMSE 1.50 1.20 2.80 2.03 

MSE 0.05 0.01 0.12 0.10 

RMSSE 0.70 0.64 0.90 0.50 

ASE -0.30 -0.40 0.15 -1.70 

Best RMSE     

ME -0.16 0.23 -0.60 -0.60 

RMSE 0.78 0.82 1.30 1.30 

MSE -0.05 -0.52 -0.48 -0.48 

RMSSE 1.70 3.01 1.94 1.94 

ASE -0.03 0.40 0.41 0.41 

Best MSE     

ME -0.28 -0.11 -0.35 -0.14 

RMSE 2.70 1.36 2.80 2.33 
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Table 3. 

Geostatistics Method TCK1986-1 TCK1986-2 TCK1999-1 TCK1999-2 

MSE -0.01 0.00 0.00 0.00 

RMSSE 0.85 0.56 0.89 0.74 

ASE -0.08 -0.60 0.50 -0.38 

Best RMSSE     

ME 0.41 -0.35 -0.80 -0.69 

RMSE 2.82 0.97 3.20 2.38 

MSE -0.02 0.16 -0.10 -0.13 

RMSSE 0.87 0.98 1.00 1.01 

ASE -0.04 0.00 0.50 0.29 

Best ASE     

ME -0.21 -0.35 -0.20 -0.62 

RMSE 1.80 0.97 2.70 2.31 

MSE 0.01 0.16 0.01 -0.13 

RMSSE 0.79 0.98 0.86 0.79 

ASE -0.02 0.00 -0.01 0.01 

 

As mentioned before for optimality and validity of the models if the root-mean-squared 

prediction error is smaller for a particular model therefore it is the optimal model (ArcGIS 

Help, 2014). However, when comparing with another model, the root-mean-squared 

prediction error may be closer to the average estimated prediction standard error (ArcGIS 

Help, 2014). This is a more valid model because when we predict at a point without data, 

we only have the estimated standard errors to assess our uncertainty of that prediction. 

We also must check that the root-mean-square standardized is close to one (ArcGIS Help, 

2014). In light of these considerations and as can be understood from Table 3, in spatial 

interpolation of 1986 the best-unbiased output is belonging to TCK1986-2 but the most 

accurate is TCK1986-1. TCK with less snow-affected image in 1986 provides precise 

standard error, too. On the other hand, in 1999 TCK1999-1 shows better results in amount 

of bias while accuracy with other TCK is the same. In addition, the TCK1999-1 provides 

more accurate standard error. Totally, comparing the results reveal that in Geostatistical 

modeling of December 1986 the TCK with more snow cover area had the best ME, RMSE 

and MSE; conversely, interpolations used less snow covered image had best RMSSE and 

ASE. For 1999 interpolation, TCK1999-1 is better for ME, MSE, RMSSE and is similar 

to 1999-2 in RMSE and ASE. Furthermore, if we decided based on RMSE and other 

statistics in one image, TCK1986-1 is the best for year 1986 and for 1999, the results are 

similar. 

Conclusions 

Developing remote sensing data (including thermal bands) is taking place at an 

unprecedented rate nowadays. In line with this development, satellite images can be 

relatively easily in access. Thus, we decided to use the thermal bands of the TM and 

ETM+ sensors as auxiliary data to enhance the mean temperature interpolation quality in 

the complex regions with less meteorological stations and evaluate the impact of snow-

covered area in thermal images on air temperature interpolation. Results revealed that 

TCK for December 1986 provides better results with more snow affected thermal image. 
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While in 1999 different results were obtained, the best selected output did not show 

impacts of different snow cover areas. It should be recalled that in 1999, the snow cover 

areas are 1261.4 km2 and 367.2 km2 and they did not show difference in predicted results. 

While in 1986 first SCA is 3786.9 km2 and second one is 1003 km2. Therefore, it could 

be conclude that, perhaps 3000 km2 is the impact threshold. 

The future direction of this research includes testing and use of different spatial 

interpolations, Geostatistics methods, and thermal bands for different regions and time 

periods. It is recommended to provide thermal inputs of Geostatistics methods using 

different sampling methods to reduce the volume of calculations. Furthermore, checking 

the usefulness of the method for other geographical factors that need to be interpolated is 

important. It is worth noting that this study could open a new window to the climatic 

neighborhood concept using future studies. In the end, it should be mentioned that it is 

clear that the number of observation stations are too low and considering the kriging 

requirements like normal distribution and stationarity is toilsome but this problem exists 

in many regions in the world and the potential of geostatistics should be considered to 

solve it. 
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