شبیه سازی و پهنه بندی گسترش آتش سوزی در اکوسیستم جنگلی به کمک مدل FARSITE (مطالعه موردی: جنگل های استان ایلام)

نوع مقاله : پژوهشی

نویسندگان

1 دانشکده منابع طبیعی و محیط‌زیست، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

2 واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران.

چکیده

امروزه پدیده آتش­سوزی در عرصه­های جنگلی به­عنوان یکی از بلایای طبیعی بخش وسیعی از جنگل­های جهان را مورد تهدید قرار داده است. با توجه به اثرات مخرب آتش­سوزی بر جنگل، انجام تحقیقاتی که با استفاده از روش­های کارآمد بتوانند گسترش آتش­سوزی را پیش­بینی کنند، بسیار ارزشمند است. بر همین مبنا شبیه­سازی آتش با استفاده از مدل FARSITE در جنگل­های استان ایلام در سال 1395 به انجام رسید.  FARSITEمدل بررسی رفتار و گسترش آتش به­شمار می­رود که از عوامل متعددی ازجمله شیب، جهت، ارتفاع، ماده سوختی و اطلاعات هواشناسی بهره می­برد. در این پژوهش نیز از  عوامل ذکر شده استفاده گردید. مدل ماده سوختنی به­عنوان یکی از ارکان اصلی در شبیه­سازی با توجه به شرایط پوشش گیاهی منطقه تعیین گردید. تغییرات محلی سرعت و جهت باد که در نتیجه شرایط توپوگرافی منطقه حادث می­شود، شبیه‌سازی و در FARSITE مورد استفاده قرار گرفت. نتایج نشان می‌دهد در چهار منطقه که آتش‌سوزی رخ داده آتش رفتار مختلفی داشته است که آن هم به علت شرایط طبیعی متفاوت در این مناطق می­باشد. پهنه­بندی خطر آتش­سوزی در استان ایلام نشان می­دهد که 5/1 درصد از منطقه دارای ریسک بسیار زیاد می­باشند، پس استفاده اجرایی از این مدل راهنمای مفیدی برای مدیریت آتش­سوزی جنگل می­باشد و براساس آن می­توان برنامه مدیریت بحران آتش­سوزی در سه فاز عملیات مقدماتی یا اقدامات قبل وقوع (طرح پیش­گیری)، اقدامات حین وقوع (طرح مقابله) و عملیات پس از وقوع (طرح بازیابی) تدوین شود.

کلیدواژه‌ها


اسکندری، س؛ 1394. تحلیلی بر روش‌های مدل‌سازی و شبیه‌سازی گسترش آتش‌سوزی در جنگل‌ها. انسان و محیط‌زیست. 34: صص 67-88.
جهدی، ر.، درویش‌صفت، ع.ا.، اعتماد، و؛ 1394. تهیه نقشه ماده سوختنی و پیش‌بینی رفتار آتش سطحی با استفاده از FARSITE. چوب و جنگل. 22 (2): صص 207-225.
قائمی‌راد، ط.، کریمی، م؛ 1394. ارزیابی عملکرد مدل‌سازی گسترش آتش‌سوزی جنگل با استفاده از اوتوماتای سلولی (پژوهش موردی: جنگل‌های بخش لاکان شهرستان رشت). جنگل و صنوبر ایران. 23 (1): صص 64-78.
متکان، ع.ا.، شکیبا، ع.ر.، میرباقری، ب.، بازاری‌جامخانه، م؛ 1392. شبیه‌سازی گسترش آتش‌سوزی در عرصه‌های طبیعی با استفاده از FARSITE (مطالعه موردی: جنگل‌های شهرستان نکا). همایش ملی پژوهش‌های محیط-زیست ایران. همدان- دانشگاه شهید مفتح، NCER01_128.
Adab, H., Devi Kanniah, K., & Solaimani, K., 2012. Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques, Natural Hazard 65(3), 1723-1743.
Ager, A.A., Preisler, H., Arca, B., Spano, D., & Salis, M., 2014. Wildfire risk estimation in the Mediterranean area, Environmetrics 25: 384–396.
Arca, B., Duce, P., Pellizzaro, G., Laconi, M., Salis, M., &Spano, D., 2006. Evaluation of FARSITE simulator in Mediterranean shrub land, Forest Ecology and Management 234, 110-110.
Artes, T., Cencerrado, A., Cortes, A., & Margalef, T., 2013. Relieving the effects of uncertainty in forest fire spread prediction by hybrid MPI-OpenMP parallel strategies. International Conference on Computational science, Procedia Computer Science 18, 2278-2287.
Brun, C., Artes, T., Cencrrrado, A., Margalef, T., & Cortes, A., 2017. A High Performance Computing Framework for Continental-Scale Forest Fire Spread Prediction, Procedia Computer Science 108, 1712-1721.
Coban, H.O., &Mehmet, E., 2010. Analysis of Forest Road Network Conditions Before and After Forest Fire, FORMEC 2010, Forest Engineering: Meeting the Needs of the Society and the Environment 125, 11-14.
Denham, M., Wendt, K., Bianchini, G., Cortes, A., &Margalef, T., 2012. Dynamic Data-Driven Genetic Algorithm for forest fire spread prediction, Journal of Computational Science 3 398-404.
Duane, A., Aquilue, N., Gil-Tena, A., & Brotons, L., 2016. Integrating fire spread patterns in fire modelling at landscape scale, Environmental Modelling & Software 86, 219-231.
Finney, M.A., 2004. FARSITE: Fire Area Simulator Model Development and Evaluation, nited States Department of Agriculture Forest Service Rocky Mountain, 52.
Ghobadi, G.J., Gholizadeh, B., &Dashliburun, O.M., 2012. Forest fire risk zone mapping from geographic information system in Northern Forests of Iran (Case study, Golestan Province), International Journal of Agricultural Crop Science 4(12), 818-824.
Guo, F., Su, Z., Wang, G., Sun, L., Tigabu, M., Yang, X., &Hu, H., 2017. Understanding fire drivers and relative impacts in different Chinese forest ecosystems, Science of The Total Environment 605, 411-425.
Hao, Y., 2018. California Wildfire Spread Prediction using FARSITE and the Comparison with the Actual Wildfire Maps using Statistical Methods, UCLA, 12 (5), 1-20.
Herrera, G.V., 2016. Mexican forest fires and their decadal variations, Advances in Space Research 58 (10), 2104–2115.
Jafarzadeh, A. A,, Mahdavi, A., &Jafarzadeh, H., 2017. Evaluation of forest fire risk using the Apriori algorithm and fuzzy c-means clustering, JOURNAL OF FOREST SCIENCE 63 (8), 370–380.
Jahdi, R., Darvishsefat, A.A., Etemad, V.,&Mostafavi, M.A., 2014. Wind Effect on Wildfire and Simulation of its Spread (Case Study: Siahkal Forest in Northern Iran), Journal of Agricultural Science and Technology 16, 1109-1121.
Jahdi, R., Salis, M., Darvishsefat, A. A., Mostafavi, M. A., Alcasena, F., Etemad, V., Lozano, O., &Spano, D., 2015. Calibration of FARSITE simulator in northern Iranian forests, Nat. Hazards Earth Syst. Sci 15, 443–459.
Kanga, S., &Singh, S. K., 2017. Forest Fire Simulation Modeling using Remote Sensing & GIS, International Journal of Advanced Research in Computer Science 8 (5) 326-332.
Kanga, S., Sharma, L.K., &Nathawat, M.S., 2015. Himalayan Forest Fires Risk Management: A Geospatial Approach, Lambert Academic Publishing 67, 1-188.
Liu, Y., Goodrick, S. L., &Stanturf, J. A., 2013. Future U.S. wild fire potential trends projected using a dynamically downscaled climate change scenario, Forest Ecology and Management 294, 120 –135.
Marozas, V., Racinskas, J., & Bartkevicius, E., 2007. Dynamics of ground vegetation after surface fires in hemi boreal Pinus sylvestris forests, Forest Ecology and Management 250(1-2), 47–55.
Moon, K., DuffaK, T.J., & Tolhurst, G., 2016. Sub-canopy forest winds: understanding wind profiles for fire behaviour simulation, Fire Safety Journal 24,311-320.
Morales, J., Mermoz, M., Gowda, J., & Kitzberger, T., 2015. A stochastic fire spread model for north Patagonia based on fire occurrence maps, Ecological Modelling 300, 73-80.
Nuryanto, D.E., 2015. Simulation of Forest Fires Smoke Using WRF Chem Model with FINN Fire Emissions in Sumatera, Procedia Environmental Sciences 24, 65 – 69.
Nyatondo, U.P., 2010. Fire Spread Modeling in Majella National Park, Italy. MSc thesis, Twente University, 205.
Pinto, R., Benali, A., Sa, A., Fernandes, P., Soares, P., Cardoso, R., Trigo, R., & Pereira, J., 2016. Probabilistic fire spread forecast as a management tool in an operational setting, Springerplus 5 (1), 1205-1212.
Rothermel, R.C., 1972. A Mathematical Model for Prediction Fire Spread in Wild land Fuels,USDA Forest Service,48.
Rwanga, S.S., &Ndambuki, J.M., 2014. Application of geographical information systems and FARSITE in fire spread modeling, International Journal of Environment and Sustainable Development 13 (2), 1105-1120.
Salis, M., Ager, A.A., Alcasena, F., Arca, B., Finney., M. A, Pellizzaro, G., &Spano, D., 2015. Analyzing seasonal patterns of wildfire likelihood and intensity in Sardinia, Italy. Environ. Monitoring Assess 187, 1–20.
Sanjuan, G., Brun, C., Margalef, T.,& Cortes, A., 2014. Wind field uncertainty in forest fire propagation prediction, Procedia Computer Science 29, 1535–1545.
Shen, C., Prince, D., Gallacher, J., Fletcher, M,. &Fletcher, T., 2017. Semi-empirical Model for Fire Spread in Chamise and Big Sagebrush Shrubs with Spatially-Defined Fuel Elements and Flames, National Combustion Meeting Organized by the Eastern States Section of the Combustion Institute 124, 1-6.
Williams, B.J., Song, B., &Williams T.M., 2013. Visualizing mega-fires of the past: A case study of the 1894 Hinckley Fire, east-central Minnesota, USA. Forest Ecology and Management 294, 107-119.
Wu, Z., He, H.S., Liu, Z., &Liang, Y., 2013. Comparing fuel reduction treatments for reducing wildfire size and intensity in a boreal forest landscape of northeastern China, Science of the Total Environment 454, 30–39.
www.ilam.frw.org.ir
www.ilammet.ir
Yin, H., Jin, H., Zhao, Y., Fan, Y., Qin, L., Chen, O., Huang, L., Jia, X., Liu, L., Dai, Y., &Xiao, Y., 2018. The simulation of surface fire spread based on Rothermel model in wind throw area of Changbai Mountain (Jilin, China), AIP Conference Proceedings 19 (1), 124-135.
Zarekar, A., Vahidi, H., Kazemi Zamani, H., Ghorbani, S., &Jafari, H., 2012. Forest fire hazard mapping using fuzzy AHP and GIS, Study area: Gilan province of Iran, International journal on Technical and physical problems of engineering 12(3), 47-55.
Zheng, Z., Huang, W., Li, S., &Zeng, Y., 2017. Forest fire spread simulating model using cellular automaton with extreme learning machine, Ecological Modeling 348, 33–43.
CAPTCHA Image